Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 1, February 2024
  4. Articles

Issue

Vol. 9, No. 1, February 2024

Issue Published : Feb 28, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Optimized Support Vector Machine with Particle Swarm Optimization to Improve the Accuracy Amazon Sentiment Analysis Classification

https://doi.org/10.22219/kinetik.v9i1.1888
Maylinna Rahayu Ningsih
Universitas Negeri Semarang
Jumanto Unjung
Universitas Negeri Semarang
https://orcid.org/0000-0002-9225-1098
Dwika Ananda Agustina Pertiwi
Universiti Tun Hussein Onn Malaysia
Budi Prasetiyo
Universitas Negeri Semarang
Much Aziz Muslim
Universiti Tun Hussein Onn Malaysia

Corresponding Author(s) : Jumanto Unjung

jumanto@mail.unnes.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 1, February 2024
Article Published : Feb 28, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Text mining is a valuable technique that empowers users to gain a deeper understanding of existing textual data, ultimately allowing them to make more informed decisions. One important application of text mining is in the field of sentiment analysis, which has gained significant traction among companies aiming to understand how customers perceive their products and services. In response to this growing need, various research efforts have been made to improve the accuracy of sentiment analysis classification models. The purpose of this article is to discuss a specific approach using the Support Vector Machine (SVM) algorithm, which is often used in machine learning for text classification tasks and then combined with the application of Particle Swarm Optimization (PSO), which optimizes the SVM model parameters to achieve the best classification results. This dynamic combination not only improves accuracy but also enhances the model's ability to efficiently handle large amounts of text data to achieve better results. The research findings highlight the effectiveness of this approach. The application of the SVM algorithm with PSO resulted in an outstanding accuracy performance of 94.92%. The substantial increase in accuracy compared to previous studies shows the promising potential of this methodology. This proves that the SVM algorithm model approach with Particle Swarm Optimization provides good performance.

Keywords

Support Vector Machine Particle Swarm Optimization Classification Amazon
Ningsih, M. R., Unjung, J., Pertiwi, D. A. A., Prasetiyo, B., & Muslim, M. A. (2024). Optimized Support Vector Machine with Particle Swarm Optimization to Improve the Accuracy Amazon Sentiment Analysis Classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(1), 101-108. https://doi.org/10.22219/kinetik.v9i1.1888
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. I. Castell-uroz, P. Barlet-ros, dan U. Polit, “Amazon Alexa traffic traces,” vol. 205, 2022. https://doi.org/10.1016/j.comnet.2022.108782
  2. M. Shaden, A. Fadel, S. Achmad, dan R. Sutoyo, “Sentiment analysis for customer review : Case study of Traveloka Sentiment analysis for customer review : Case study of Traveloka,” Procedia Comput. Sci., vol. 216, no. 2022, hal. 682–690, 2023. https://doi.org/10.1016/j.procs.2022.12.184
  3. C. Kim dan Y. Na, “Consumer reviews analysis on cycling pants in online shopping malls using text mining,” Fash. Text., 2021. https://doi.org/10.1186/s40691-021-00264-7
  4. T. Nguyen, T. Ngoc, H. Nguyen, T. Thu, dan V. A. Nguyen, “Mining aspects of customer ’ s review on the social network,” J. Big Data, hal. 1–21, 2019. https://doi.org/10.1186/s40537-019-0184-5
  5. L. Kong, C. Li, J. Ge, V. Ng, dan B. Luo, “Predicting Product Review Helpfulness – A Hybrid Method,” hal. 1–14, 2020. https://doi.org/10.1109/TSC.2020.3041095
  6. V. A. Fitri, R. Andreswari, M. A. Hasibuan, V. A. Fitri, R. Andreswari, dan M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti- Sentiment Analysis of Social Media Twitter with Case of Anti- LGBT Campaign in Indonesia using Naïve Bayes , Decision Tree , LGBT Campaign in Indonesia using Naïve Bayes , Decision Tree , and R,” Procedia Comput. Sci., vol. 161, hal. 765–772, 2019. https://doi.org/10.1016/j.procs.2019.11.181
  7. Y. Zhou dan S. Yang, “Roles of Review Numerical and Textual Characteristics on Review Helpfulness Across Three Different Types of Reviews,” IEEE Access, vol. 7, hal. 27769–27780, 2019. https://doi.org/10.1109/ACCESS.2019.2901472
  8. A. Falasari dan M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft Comput. Explor., vol. 3, no. 1, hal. 31–36, 2022. https://doi.org/10.52465/joscex.v3i1.68
  9. B. Navaneeth dan M. Suchetha, “PSO optimized 1-D CNN-SVM architecture for real-time detection and classi fi cation applications,” Comput. Biol. Med., vol. 108, no. September 2018, hal. 85–92, 2019. https://doi.org/10.1016/j.compbiomed.2019.03.017
  10. J. Unjung dan M. R. Ningsih, “Optimized Handwriting-based Parkinson ’ s Disease Classification Using Ensemble Modeling and VGG19 Feature Extraction,” Sci. J. Informatics, vol. 10, no. 4, hal. 489–498, 2023. https://doi.org/10.15294/sji.v10i4.47108
  11. D. Valero-carreras, J. Alcaraz, dan M. Landete, “Computers and Operations Research Comparing two SVM models through different metrics based on the confusion matrix,” Comput. Oper. Res., vol. 152, no. April 2022, hal. 106131, 2023.https://doi.org/10.1016/j.cor.2022.106131
  12. A. F. Limas, R. Rosnelly, dan A. Nursie, “A Comparative Analysis on the Evaluation of KNN and SVM Algorithms in the Classification of Diabetes,” Sci. J. Informatics, vol. 10, no. 3, hal. 251–260, 2023. https://doi.org/10.15294/sji.v10i3.44269
  13. D. Asante, T. Omar, A. Ganat, R. Gholami, dan S. Ridha, “Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties : Comparative analysis of ANN and SVM models,” J. Pet. Sci. Eng., vol. 200, no. November 2020, hal. 108182, 2021. https://doi.org/10.1016/j.petrol.2020.108182
  14. R. Zheng, Y. Bao, L. Zhao, dan L. Xing, “Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network,” J. Mater. Res. Technol., 2023. https://doi.org/10.1016/j.jmrt.2023.10.046
  15. W. Zhou, M. Chen, Z. Yang, dan X. Song, “Socio-Economic Planning Sciences Real estate risk measurement and early warning based on PSO-SVM,” Socioecon. Plann. Sci., no. November, hal. 101001, 2020. https://doi.org/10.1016/j.seps.2020.101001
  16. A. Dongoran, S. Rahmadani, Zakarias, M. Zarlis, dan Zakarias, “Feature weighting using particle swarm optimization for learning vector quantization classifier Feature weighting using particle swarm optimization for learning vector quantization classifier,” IOP Publ., 2018. https://doi.org/10.1088/1742-6596/978/1/012032
  17. A. Nazir, A. Akhyar, dan E. Budianita, “Toddler Nutritional Status Classification Using C4 . 5 and Particle Swarm Optimization,” vol. 9, no. 1, hal. 32–41, 2022. https://doi.org/10.15294/sji.v9i1.33158
  18. A. Mee, E. Homapour, F. Chiclana, dan O. Engel, “Sentiment analysis using TF – IDF weighting of UK MPs ’ tweets on Brexit,” Knowledge-Based Syst., vol. 228, hal. 107238, 2021. https://doi.org/10.1016/j.knosys.2021.107238
  19. J. Jumanto, M. A. Muslim, Y. Dasril, dan T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, hal. 49–70, 2023. https://doi.org/10.52465/joiser.v1i1.104
  20. N. H. Jeremy, D. Suhartono, dan S. Philip, “Deep neural networks and weighted word embeddings for sentiment analysis of drug product reviews analysis,” Procedia Comput. Sci., vol. 216, no. 2022, hal. 664–671, 2023. https://doi.org/10.1016/j.procs.2022.12.182
  21. W. Kim, K. Nam, dan Y. Son, “Electronic Commerce Research and Applications Categorizing affective response of customer with novel explainable clustering algorithm : The case study of Amazon reviews,” Electron. Commer. Res. Appl., vol. 58, no. February, hal. 101250, 2023. https://doi.org/10.1016/j.elerap.2023.101250
  22. P. Pandey dan N. Soni, “Sentiment Analysis on Customer Feedback Data : Amazon Product Reviews,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., hal. 320–322, 2019. https://doi.org/10.1109/COMITCon.2019.8862258
  23. M. R. Ningsih, K. Aalifian, H. Wibowo, dan A. U. Dullah, “Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding,” J. Soft Comput. Explor., vol. 4, no. 3, hal. 142–151, 2023. https://doi.org/10.52465/joscex.v4i3.193
  24. R. A. Sinoara, “Text mining and semantics : a systematic mapping study,” 2017. https://doi.org/10.1186/s13173-017-0058-7
  25. T. Singh dan M. Kumari, “Role of Text Pre-Processing in Twitter Sentiment Analysis,” Procedia - Procedia Comput. Sci., vol. 89, hal. 549–554, 2016. https://doi.org/10.1016/j.procs.2016.06.095
  26. R. Rani dan D. K. Lobiyal, “Performance evaluation of text-mining models with Hindi stopwords lists,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, hal. 2771–2786, 2022. https://doi.org/10.1016/j.jksuci.2020.03.003
  27. T. Hema et al., “Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as development using classifier,” Procedia Comput. Sci., vol. 197, no. 2021, hal. 660–667, 2022. https://doi.org/10.1016/j.procs.2021.12.187
  28. R. Ahuja, A. Chug, S. Kohli, S. Gupta, dan P. Ahuja, “The Impact of Features Extraction on the Sentiment Analysis,” Procedia Comput. Sci., vol. 152, hal. 341–348, 2019. https://doi.org/10.1016/j.procs.2019.05.008
  29. G. N. H, R. Siautama, A. C. I. A, dan D. Suhartono, “Extractive Hotel Review Summarization based on TF / IDF and Adjective-Noun Pairing by Considering Annual Sentiment Trends,” Procedia Comput. Sci., vol. 179, no. 2020, hal. 558–565, 2021. https://doi.org/10.1016/j.procs.2021.01.040
  30. E. Gul, N. Alpaslan, dan M. E. Emiroglu, “Robust optimization of SVM hyper-parameters for spillway type selection,” Ain Shams Eng. J., vol. 12, no. 3, hal. 2413–2423, 2021. https://doi.org/10.1016/j.asej.2020.10.022
  31. S. M. Malakouti, “Case Studies in Chemical and Environmental Engineering Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation,” Case Stud. Chem. Environ. Eng., vol. 8, no. April, hal. 100351, 2023. https://doi.org/10.1016/j.cscee.2023.100351
  32. K. F. Irnanda, A. P. Windarto, dan I. S. Damanik, “Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner,” J. Ris. Komput., vol. 9, no. 1, hal. 122–130, 2022. http://dx.doi.org/10.30865/jurikom.v9i1.3836
  33. N. Hussain, H. T. Mirza, F. Iqbal, dan I. Memon, “Spam Review Detection Using the Linguistic and Spammer Behavioral Methods,” IEEE Access, vol. 8, hal. 53801–53816, 2020. https://doi.org/10.1109/ACCESS.2020.2979226
  34. V. Ahuja dan M. Shakeel, “Twitter Presence of Jet Airways-Deriving Customer Insights Using Netnography and Wordclouds,” Procedia Comput. Sci., vol. 122, hal. 17–24, 2017. https://doi.org/10.1016/j.procs.2017.11.336
  35. H. Cam, A. Veli, U. Demirel, dan S. Ahmed, “Heliyon Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers,” Heliyon, vol. 10, no. 1, hal. e23784, 2024. https://doi.org/10.1016/j.heliyon.2023.e23784
  36. M. Isnan, G. Natanael, dan B. Pardamean, “Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model,” Procedia Comput. Sci., vol. 227, hal. 168–175, 2023. https://doi.org/10.1016/j.procs.2023.10.514
  37. D. Wang dan Y. Zhao, “Using News to Predict on Investor Sentiment : on SVM and Knowledge Internet of Using News to Predict Investor Sentiment : Based on SVM Model,” Procedia Comput. Sci., vol. 174, no. 2019, hal. 191–199, 2020. https://doi.org/10.1016/j.procs.2020.06.074
Read More

References


I. Castell-uroz, P. Barlet-ros, dan U. Polit, “Amazon Alexa traffic traces,” vol. 205, 2022. https://doi.org/10.1016/j.comnet.2022.108782

M. Shaden, A. Fadel, S. Achmad, dan R. Sutoyo, “Sentiment analysis for customer review : Case study of Traveloka Sentiment analysis for customer review : Case study of Traveloka,” Procedia Comput. Sci., vol. 216, no. 2022, hal. 682–690, 2023. https://doi.org/10.1016/j.procs.2022.12.184

C. Kim dan Y. Na, “Consumer reviews analysis on cycling pants in online shopping malls using text mining,” Fash. Text., 2021. https://doi.org/10.1186/s40691-021-00264-7

T. Nguyen, T. Ngoc, H. Nguyen, T. Thu, dan V. A. Nguyen, “Mining aspects of customer ’ s review on the social network,” J. Big Data, hal. 1–21, 2019. https://doi.org/10.1186/s40537-019-0184-5

L. Kong, C. Li, J. Ge, V. Ng, dan B. Luo, “Predicting Product Review Helpfulness – A Hybrid Method,” hal. 1–14, 2020. https://doi.org/10.1109/TSC.2020.3041095

V. A. Fitri, R. Andreswari, M. A. Hasibuan, V. A. Fitri, R. Andreswari, dan M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti- Sentiment Analysis of Social Media Twitter with Case of Anti- LGBT Campaign in Indonesia using Naïve Bayes , Decision Tree , LGBT Campaign in Indonesia using Naïve Bayes , Decision Tree , and R,” Procedia Comput. Sci., vol. 161, hal. 765–772, 2019. https://doi.org/10.1016/j.procs.2019.11.181

Y. Zhou dan S. Yang, “Roles of Review Numerical and Textual Characteristics on Review Helpfulness Across Three Different Types of Reviews,” IEEE Access, vol. 7, hal. 27769–27780, 2019. https://doi.org/10.1109/ACCESS.2019.2901472

A. Falasari dan M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft Comput. Explor., vol. 3, no. 1, hal. 31–36, 2022. https://doi.org/10.52465/joscex.v3i1.68

B. Navaneeth dan M. Suchetha, “PSO optimized 1-D CNN-SVM architecture for real-time detection and classi fi cation applications,” Comput. Biol. Med., vol. 108, no. September 2018, hal. 85–92, 2019. https://doi.org/10.1016/j.compbiomed.2019.03.017

J. Unjung dan M. R. Ningsih, “Optimized Handwriting-based Parkinson ’ s Disease Classification Using Ensemble Modeling and VGG19 Feature Extraction,” Sci. J. Informatics, vol. 10, no. 4, hal. 489–498, 2023. https://doi.org/10.15294/sji.v10i4.47108

D. Valero-carreras, J. Alcaraz, dan M. Landete, “Computers and Operations Research Comparing two SVM models through different metrics based on the confusion matrix,” Comput. Oper. Res., vol. 152, no. April 2022, hal. 106131, 2023.https://doi.org/10.1016/j.cor.2022.106131

A. F. Limas, R. Rosnelly, dan A. Nursie, “A Comparative Analysis on the Evaluation of KNN and SVM Algorithms in the Classification of Diabetes,” Sci. J. Informatics, vol. 10, no. 3, hal. 251–260, 2023. https://doi.org/10.15294/sji.v10i3.44269

D. Asante, T. Omar, A. Ganat, R. Gholami, dan S. Ridha, “Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties : Comparative analysis of ANN and SVM models,” J. Pet. Sci. Eng., vol. 200, no. November 2020, hal. 108182, 2021. https://doi.org/10.1016/j.petrol.2020.108182

R. Zheng, Y. Bao, L. Zhao, dan L. Xing, “Method to predict alloy yield based on multiple raw material conditions and a PSO-LSTM network,” J. Mater. Res. Technol., 2023. https://doi.org/10.1016/j.jmrt.2023.10.046

W. Zhou, M. Chen, Z. Yang, dan X. Song, “Socio-Economic Planning Sciences Real estate risk measurement and early warning based on PSO-SVM,” Socioecon. Plann. Sci., no. November, hal. 101001, 2020. https://doi.org/10.1016/j.seps.2020.101001

A. Dongoran, S. Rahmadani, Zakarias, M. Zarlis, dan Zakarias, “Feature weighting using particle swarm optimization for learning vector quantization classifier Feature weighting using particle swarm optimization for learning vector quantization classifier,” IOP Publ., 2018. https://doi.org/10.1088/1742-6596/978/1/012032

A. Nazir, A. Akhyar, dan E. Budianita, “Toddler Nutritional Status Classification Using C4 . 5 and Particle Swarm Optimization,” vol. 9, no. 1, hal. 32–41, 2022. https://doi.org/10.15294/sji.v9i1.33158

A. Mee, E. Homapour, F. Chiclana, dan O. Engel, “Sentiment analysis using TF – IDF weighting of UK MPs ’ tweets on Brexit,” Knowledge-Based Syst., vol. 228, hal. 107238, 2021. https://doi.org/10.1016/j.knosys.2021.107238

J. Jumanto, M. A. Muslim, Y. Dasril, dan T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, hal. 49–70, 2023. https://doi.org/10.52465/joiser.v1i1.104

N. H. Jeremy, D. Suhartono, dan S. Philip, “Deep neural networks and weighted word embeddings for sentiment analysis of drug product reviews analysis,” Procedia Comput. Sci., vol. 216, no. 2022, hal. 664–671, 2023. https://doi.org/10.1016/j.procs.2022.12.182

W. Kim, K. Nam, dan Y. Son, “Electronic Commerce Research and Applications Categorizing affective response of customer with novel explainable clustering algorithm : The case study of Amazon reviews,” Electron. Commer. Res. Appl., vol. 58, no. February, hal. 101250, 2023. https://doi.org/10.1016/j.elerap.2023.101250

P. Pandey dan N. Soni, “Sentiment Analysis on Customer Feedback Data : Amazon Product Reviews,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., hal. 320–322, 2019. https://doi.org/10.1109/COMITCon.2019.8862258

M. R. Ningsih, K. Aalifian, H. Wibowo, dan A. U. Dullah, “Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding,” J. Soft Comput. Explor., vol. 4, no. 3, hal. 142–151, 2023. https://doi.org/10.52465/joscex.v4i3.193

R. A. Sinoara, “Text mining and semantics : a systematic mapping study,” 2017. https://doi.org/10.1186/s13173-017-0058-7

T. Singh dan M. Kumari, “Role of Text Pre-Processing in Twitter Sentiment Analysis,” Procedia - Procedia Comput. Sci., vol. 89, hal. 549–554, 2016. https://doi.org/10.1016/j.procs.2016.06.095

R. Rani dan D. K. Lobiyal, “Performance evaluation of text-mining models with Hindi stopwords lists,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, hal. 2771–2786, 2022. https://doi.org/10.1016/j.jksuci.2020.03.003

T. Hema et al., “Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as development using classifier,” Procedia Comput. Sci., vol. 197, no. 2021, hal. 660–667, 2022. https://doi.org/10.1016/j.procs.2021.12.187

R. Ahuja, A. Chug, S. Kohli, S. Gupta, dan P. Ahuja, “The Impact of Features Extraction on the Sentiment Analysis,” Procedia Comput. Sci., vol. 152, hal. 341–348, 2019. https://doi.org/10.1016/j.procs.2019.05.008

G. N. H, R. Siautama, A. C. I. A, dan D. Suhartono, “Extractive Hotel Review Summarization based on TF / IDF and Adjective-Noun Pairing by Considering Annual Sentiment Trends,” Procedia Comput. Sci., vol. 179, no. 2020, hal. 558–565, 2021. https://doi.org/10.1016/j.procs.2021.01.040

E. Gul, N. Alpaslan, dan M. E. Emiroglu, “Robust optimization of SVM hyper-parameters for spillway type selection,” Ain Shams Eng. J., vol. 12, no. 3, hal. 2413–2423, 2021. https://doi.org/10.1016/j.asej.2020.10.022

S. M. Malakouti, “Case Studies in Chemical and Environmental Engineering Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation,” Case Stud. Chem. Environ. Eng., vol. 8, no. April, hal. 100351, 2023. https://doi.org/10.1016/j.cscee.2023.100351

K. F. Irnanda, A. P. Windarto, dan I. S. Damanik, “Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner,” J. Ris. Komput., vol. 9, no. 1, hal. 122–130, 2022. http://dx.doi.org/10.30865/jurikom.v9i1.3836

N. Hussain, H. T. Mirza, F. Iqbal, dan I. Memon, “Spam Review Detection Using the Linguistic and Spammer Behavioral Methods,” IEEE Access, vol. 8, hal. 53801–53816, 2020. https://doi.org/10.1109/ACCESS.2020.2979226

V. Ahuja dan M. Shakeel, “Twitter Presence of Jet Airways-Deriving Customer Insights Using Netnography and Wordclouds,” Procedia Comput. Sci., vol. 122, hal. 17–24, 2017. https://doi.org/10.1016/j.procs.2017.11.336

H. Cam, A. Veli, U. Demirel, dan S. Ahmed, “Heliyon Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers,” Heliyon, vol. 10, no. 1, hal. e23784, 2024. https://doi.org/10.1016/j.heliyon.2023.e23784

M. Isnan, G. Natanael, dan B. Pardamean, “Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model,” Procedia Comput. Sci., vol. 227, hal. 168–175, 2023. https://doi.org/10.1016/j.procs.2023.10.514

D. Wang dan Y. Zhao, “Using News to Predict on Investor Sentiment : on SVM and Knowledge Internet of Using News to Predict Investor Sentiment : Based on SVM Model,” Procedia Comput. Sci., vol. 174, no. 2019, hal. 191–199, 2020. https://doi.org/10.1016/j.procs.2020.06.074

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 9 Download : 16

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License