An application of ANFIS for Lung Diseases Early Detection System
Corresponding Author(s) : Mochamad Yusuf Santoso
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 1, February 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan RI, “Hasil Utama Riset Kesehatan Dasar,” 2018.
- D. Purnamasari, “The Emergence of Non-communicable Disease in Indonesia,” Acta Med. Indones., vol. 50, no. 4, pp. 273–274, 2018.
- M. Yunus and S. Setyowibowo, “Aplikasi sistem pendukung keputusan diagnosa penyakit paru- paru dengan metode forward chaining,” J. Teknol. Inf. Teor. Konsep, dan Implementasi, vol. 2, no. 2, pp. 95–114, 2011.
- R. Rahmadewi and R. Kurnia, “Klasifikasi penyakit paru berdasarkan citra rontgen dengan metoda segmentasi sobel,” J. Nas. Tek. Elektro, vol. 5, no. 1, pp. 7–12, 2016. https://doi.org/10.20449/jnte.v5i1.174
- I. T. Dessetiadi, A. Pujianto, and M. G. Ardi, “Sistem Pakar Untuk Mendiagnosa Penyakit Paru-Paru,” in Seminar Nasional Teknologi Informasi dan Multimedia 2016, 2016, pp. 3.4-25-3.4-30.
- http://www.klikpdpi.com/index.php?mod=content&sel=18
- P. Utomo, Wiharto, and E. Suryani, “Sistem Diagnosa Penyakit Paru Berdasarkan Foto Rontgen Dengan Pendekatan Fuzzy Learning Vector Quantization,” J. Teknol. Inf. ITSmart, vol. 1, no. 2, pp. 102–106, 2016. https://doi.org/10.20961/its.v1i2.604
- R. Fauzan and A. V. Prananda, “Expert System for Diagnosing Palm Tree Diseases and Pests using Forward Chaining and Certainty Factor,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 1, pp. 27–34, 2018. https://doi.org/10.22219/kinetik.v3i1.524
- Asnawati, R. P. Bendriyanti, and H. Aspriono, “Sistem Pakar Mendeteksi Penyakit Asma Pada Puskesmas Lingkar Timur Bengkulu,” J. Media Infotama, vol. 9, no. 2, pp. 162–205, 2013.
- A. Saputra, “Pengembangan Sistem Pakar Identifikasi Penyakit Paru-Paru Menggunakan Metode Certainty Factor,” IT J., vol. 4, no. 2, pp. 109–120, 2017.
- A. R. M. Al-shamasneh and U. H. B. Obaidellah, “Artificial Intelligence Techniques for Cancer Detection and Classification : Review Study,” Eur. Sci. J., vol. 13, no. 3, pp. 342–370, 2017. https://doi.org/10.19044/esj.2017.v13n3p342
- F. Wanita, “Sistem pakar deteksi dini penyakit dengan gejala sesak nafas menggunakan metode forward chaining,” in Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2017, vol. 2, no. 2, pp. 74–79.
- R. Kurnia, R. Rahmadewi, and F. Aini, “Deteksi Dini Penyakit Paru Dengan Metoda Bayesian,” in National Conference of Applied Sciences, Engineering, Business and Information Technology, 2016, pp. 15–16.
- M. M. Mehdy, P. Y. Ng, E. F. Shair, N. I. Saleh, and C. Gomes, “Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer,” Comput. Math. Methods Med., vol. 2017, 2017. https://doi.org/10.1155/2017/2610628
- R. Palaniappan, K. Sundaraj, and F. G. Nabi, “An Overview of Breath Phase Detection – Techniques & Applications,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 33–36, 2015.
- R. K. Purwar and V. Srivastava, “Recent Advancements in Detection of Cancer Using Various Soft Computing Techniques for MR Images,” in Progress in Advanced Computing and Intelligent Engineering, 2018, pp. 99–108. https://doi.org/10.1007/978-981-10-6872-0_10
- P. Zarbakhsh, A. Abdoljalil, and D. Hasan, “Early detection of breast cancer using optimized ANFIS and features selection,” in 9th International Conference on Computational Intelligence and Communication Networks, 2017, pp. 39–42. https://doi.org/10.1109/cicn.2017.8319352
- K. Jinsa and G. K., “Lung cancer classification using fuzzy logic for CT images,” Int. J. Med. Eng. Informatics, vol. 7, no. 3, pp. 233–249, 2015. https://doi.org/10.1504/ijmei.2015.070128
- M. Lavanya and P. M. Kannan, “Lung cancer segmentation and diagnosis of lung cancer staging using MEM (modified expectation maximization) algorithm and artificial neural network fuzzy inference system (ANFIS),” Biomed. Res. An Int. J. Med. Sci., vol. 29, no. 14, 2018. https://doi.org/10.4066/biomedicalresearch.29-18-740
- M. Obayya and M. Ghandour, “Lung Cancer Recognition using Radon Transform and Adaptive Neuro Fuzzy Inference System,” Int. J. Comput. Appl., vol. 124, no. 2, pp. 25–30, 2015. https://doi.org/10.5120/ijca2015905373
- B. Ashadevi, P. M. Selvi, and B. S. Revathi, “An Effective Diagnosis of Pulmonary Tuberculosis using K-Means Clustering and ANFIS,” Sch. J. Eng. Technol., vol. 5, no. 8, pp. 427–439, 2017.
- S. K. Meenakshi and R. C.S., “An Efficient ANFIS based Approach for Screening of Chronic Obstructive Pulmonary Disease (COPD) from Chest CT Scans with Adaptive Median Filtering,” Asian J. Sci. Res., vol. 7, no. 1, pp. 18–32, 2014. https://doi.org/10.3923/ajsr.2014.18.32
- S. Smilji et al., “Differences and similarities between the symptoms and clinical signs in patients with pulmonary tuberculosis and pneumonia,” Mil. Med. Pharm. J. Serbia, vol. 76, no. 2, pp. 192–201, 2019. https://doi.org/10.2298/vsp170301080s
- C. E. Mosher, M. A. Ott, N. Hanna, S. I. Jalal, and V. L. Champion, “Coping with Physical and Psychological Symptoms: A Qualitative Study of Advanced Lung Cancer Patients and their Family Caregivers,” Support Care Cancer, vol. 23, no. 7, pp. 2053–2060, 2016. https://doi.org/10.1007/s00520-014-2566-8
- N. Walia, H. Sing, and A. Sharma, “ANFIS : Adaptive Neuro-Fuzzy Inference System- A Survey,” Int. J. Comput. Appl., vol. 123, no. 13, pp. 32–38, 2015. https://doi.org/10.5120/ijca2015905635
- J. S. Jang, “ANFIS : Adaptive Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 1–21, 1993. https://doi.org/10.1109/21.256541
- S. Chiu, “Method and software for extracting fuzzy classification rules by subtractive clustering,” in Proceedings of North American Fuzzy Information Processing, 1996, pp. 461–465. https://doi.org/10.1109/nafips.1996.534778
- S. Dalecky and F. V. Zboril, “An Approach to ANFIS Performance,” in Advances in Intelligent Systems and Computing, 378th ed., Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19824-8_16
References
Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan RI, “Hasil Utama Riset Kesehatan Dasar,” 2018.
D. Purnamasari, “The Emergence of Non-communicable Disease in Indonesia,” Acta Med. Indones., vol. 50, no. 4, pp. 273–274, 2018.
M. Yunus and S. Setyowibowo, “Aplikasi sistem pendukung keputusan diagnosa penyakit paru- paru dengan metode forward chaining,” J. Teknol. Inf. Teor. Konsep, dan Implementasi, vol. 2, no. 2, pp. 95–114, 2011.
R. Rahmadewi and R. Kurnia, “Klasifikasi penyakit paru berdasarkan citra rontgen dengan metoda segmentasi sobel,” J. Nas. Tek. Elektro, vol. 5, no. 1, pp. 7–12, 2016. https://doi.org/10.20449/jnte.v5i1.174
I. T. Dessetiadi, A. Pujianto, and M. G. Ardi, “Sistem Pakar Untuk Mendiagnosa Penyakit Paru-Paru,” in Seminar Nasional Teknologi Informasi dan Multimedia 2016, 2016, pp. 3.4-25-3.4-30.
http://www.klikpdpi.com/index.php?mod=content&sel=18
P. Utomo, Wiharto, and E. Suryani, “Sistem Diagnosa Penyakit Paru Berdasarkan Foto Rontgen Dengan Pendekatan Fuzzy Learning Vector Quantization,” J. Teknol. Inf. ITSmart, vol. 1, no. 2, pp. 102–106, 2016. https://doi.org/10.20961/its.v1i2.604
R. Fauzan and A. V. Prananda, “Expert System for Diagnosing Palm Tree Diseases and Pests using Forward Chaining and Certainty Factor,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 1, pp. 27–34, 2018. https://doi.org/10.22219/kinetik.v3i1.524
Asnawati, R. P. Bendriyanti, and H. Aspriono, “Sistem Pakar Mendeteksi Penyakit Asma Pada Puskesmas Lingkar Timur Bengkulu,” J. Media Infotama, vol. 9, no. 2, pp. 162–205, 2013.
A. Saputra, “Pengembangan Sistem Pakar Identifikasi Penyakit Paru-Paru Menggunakan Metode Certainty Factor,” IT J., vol. 4, no. 2, pp. 109–120, 2017.
A. R. M. Al-shamasneh and U. H. B. Obaidellah, “Artificial Intelligence Techniques for Cancer Detection and Classification : Review Study,” Eur. Sci. J., vol. 13, no. 3, pp. 342–370, 2017. https://doi.org/10.19044/esj.2017.v13n3p342
F. Wanita, “Sistem pakar deteksi dini penyakit dengan gejala sesak nafas menggunakan metode forward chaining,” in Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2017, vol. 2, no. 2, pp. 74–79.
R. Kurnia, R. Rahmadewi, and F. Aini, “Deteksi Dini Penyakit Paru Dengan Metoda Bayesian,” in National Conference of Applied Sciences, Engineering, Business and Information Technology, 2016, pp. 15–16.
M. M. Mehdy, P. Y. Ng, E. F. Shair, N. I. Saleh, and C. Gomes, “Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer,” Comput. Math. Methods Med., vol. 2017, 2017. https://doi.org/10.1155/2017/2610628
R. Palaniappan, K. Sundaraj, and F. G. Nabi, “An Overview of Breath Phase Detection – Techniques & Applications,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 33–36, 2015.
R. K. Purwar and V. Srivastava, “Recent Advancements in Detection of Cancer Using Various Soft Computing Techniques for MR Images,” in Progress in Advanced Computing and Intelligent Engineering, 2018, pp. 99–108. https://doi.org/10.1007/978-981-10-6872-0_10
P. Zarbakhsh, A. Abdoljalil, and D. Hasan, “Early detection of breast cancer using optimized ANFIS and features selection,” in 9th International Conference on Computational Intelligence and Communication Networks, 2017, pp. 39–42. https://doi.org/10.1109/cicn.2017.8319352
K. Jinsa and G. K., “Lung cancer classification using fuzzy logic for CT images,” Int. J. Med. Eng. Informatics, vol. 7, no. 3, pp. 233–249, 2015. https://doi.org/10.1504/ijmei.2015.070128
M. Lavanya and P. M. Kannan, “Lung cancer segmentation and diagnosis of lung cancer staging using MEM (modified expectation maximization) algorithm and artificial neural network fuzzy inference system (ANFIS),” Biomed. Res. An Int. J. Med. Sci., vol. 29, no. 14, 2018. https://doi.org/10.4066/biomedicalresearch.29-18-740
M. Obayya and M. Ghandour, “Lung Cancer Recognition using Radon Transform and Adaptive Neuro Fuzzy Inference System,” Int. J. Comput. Appl., vol. 124, no. 2, pp. 25–30, 2015. https://doi.org/10.5120/ijca2015905373
B. Ashadevi, P. M. Selvi, and B. S. Revathi, “An Effective Diagnosis of Pulmonary Tuberculosis using K-Means Clustering and ANFIS,” Sch. J. Eng. Technol., vol. 5, no. 8, pp. 427–439, 2017.
S. K. Meenakshi and R. C.S., “An Efficient ANFIS based Approach for Screening of Chronic Obstructive Pulmonary Disease (COPD) from Chest CT Scans with Adaptive Median Filtering,” Asian J. Sci. Res., vol. 7, no. 1, pp. 18–32, 2014. https://doi.org/10.3923/ajsr.2014.18.32
S. Smilji et al., “Differences and similarities between the symptoms and clinical signs in patients with pulmonary tuberculosis and pneumonia,” Mil. Med. Pharm. J. Serbia, vol. 76, no. 2, pp. 192–201, 2019. https://doi.org/10.2298/vsp170301080s
C. E. Mosher, M. A. Ott, N. Hanna, S. I. Jalal, and V. L. Champion, “Coping with Physical and Psychological Symptoms: A Qualitative Study of Advanced Lung Cancer Patients and their Family Caregivers,” Support Care Cancer, vol. 23, no. 7, pp. 2053–2060, 2016. https://doi.org/10.1007/s00520-014-2566-8
N. Walia, H. Sing, and A. Sharma, “ANFIS : Adaptive Neuro-Fuzzy Inference System- A Survey,” Int. J. Comput. Appl., vol. 123, no. 13, pp. 32–38, 2015. https://doi.org/10.5120/ijca2015905635
J. S. Jang, “ANFIS : Adaptive Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 1–21, 1993. https://doi.org/10.1109/21.256541
S. Chiu, “Method and software for extracting fuzzy classification rules by subtractive clustering,” in Proceedings of North American Fuzzy Information Processing, 1996, pp. 461–465. https://doi.org/10.1109/nafips.1996.534778
S. Dalecky and F. V. Zboril, “An Approach to ANFIS Performance,” in Advances in Intelligent Systems and Computing, 378th ed., Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19824-8_16