Optimization Fuzzy Inference System based Particle Swarm Optimization for Onset Prediction of the Rainy Season
Corresponding Author(s) : Noviandi Noviandi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 1, February 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Cramer, M. Kampouridis, and A. A. Freitas, “Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives,” Appl. Soft Comput., vol. 70, pp. 208–224, Sep. 2018. https://doi.org/10.1016/j.asoc.2018.05.016
- N. Diodato and G. Bellocchi, “Decadal modelling of rainfall–runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices,” Glob. Planet. Change, vol. 86–87, pp. 79–91, Apr. 2012. https://doi.org/10.1016/j.gloplacha.2012.02.002
- F. Novadiwanti, A. Buono, and A. Faqih, “CNN Optimization Using GA for Rainy Season Onset Prediction Based on GCM Output: Pacitan District,” J. Tanah dan Iklim, vol. 41, no. 1, pp. 69–77, 2017.
- S. Chen and X. Zha, “Effects of the ENSO on rainfall erosivity in the Fujian Province of southeast China,” Sci. Total Environ., vol. 621, pp. 1378–1388, Apr. 2018. https://doi.org/10.1016/j.scitotenv.2017.10.090
- E. V. Garov, N. G. Sidorina, E. E. Zagorskaya, P. A. Sudarev, and A. S. Meparishvili, “The prevalence of tympanosclerosis and the effectiveness of its surgical treatment,” Vestn. Otorinolaringol., vol. 82, no. 2, p. 4, 2017. https://doi.org/10.17116/otorino20178224-10
- Y. Xiang, L. Gou, L. He, S. Xia, and W. Wang, “A SVR–ANN combined model based on ensemble EMD for rainfall prediction,” Appl. Soft Comput., vol. 73, pp. 874–883, Dec. 2018. https://doi.org/10.1016/j.asoc.2018.09.018
- Y. Dash, S. K. Mishra, and B. K. Panigrahi, “Rainfall prediction for the Kerala state of India using artificial intelligence approaches,” Computers and Electrical Engineering, vol. 70. pp. 66–73, 2018. https://doi.org/10.1016/j.compeleceng.2018.06.004
- A. El-Shafie, O. Jaafer, and A. Seyed, “Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia,” Int. J. Phys. Sci., vol. 6, no. 12, pp. 2875–2888, 2011. https://doi.org/10.5897/IJPS11.515
- H. R. Jamshidi, A. Karimi, and M. Haghshenas, “Risk assessment of particulate matters in a dentistry school using fuzzy inference systems,” Measurement, vol. 116, pp. 257–263, Feb. 2018. https://doi.org/10.1016/j.measurement.2017.11.010
- E. Egrioglu, E. Bas, O. C. Yolcu, and U. Yolcu, “Intuitionistic time series fuzzy inference system,” Eng. Appl. Artif. Intell., vol. 82, pp. 175–183, Jun. 2019. https://doi.org/10.1016/j.engappai.2019.03.024
- A. MahmoumGonbadi, Y. Katebi, and A. Doniavi, “A generic two-stage fuzzy inference system for dynamic prioritization of customers,” Expert Syst. Appl., vol. 131, pp. 240–253, Oct. 2019. https://doi.org/10.1016/j.eswa.2019.04.059
- A. Ilham, R. Wahono, C. Supriyanto, and A. Wijaya, “U-control Chart Based Differential Evolution Clustering for Determining the Number of Cluster in k -Means,” Int. J. Intell. Eng. Syst., vol. 12, no. 4, pp. 306–316, Aug. 2019. https://doi.org/10.22266/ijies2019.0831.28
- Y. Gupta and A. Saini, “A novel Fuzzy-PSO term weighting automatic query expansion approach using combined semantic filtering,” Knowledge-Based Syst., vol. 136, pp. 97–120, Nov. 2017. https://doi.org/10.1016/j.jhydrol.2015.04.047
- X. He, H. Guan, and J. Qin, “A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall,” J. Hydrol., vol. 527, pp. 88–100, Aug. 2015. https://doi.org/10.1016/j.jhydrol.2015.04.047
- J. M. Keller, D. Liu, and D. B. Fogel, Fuzzy Controllers Handbook. Elsevier, 1997. https://doi.org/10.1016/B978-0-7506-3429-8.X5002-7
- M. F. Azeem, Fuzzy Inference System - Theory and Applications. InTech, 2012. https://doi.org/10.5772/2341
- R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995. https://doi.org/10.1109/MHS.1995.494215
- T. Cura, “A particle swarm optimization approach to clustering,” Expert Syst. Appl., vol. 39, no. 1, pp. 1582–1588, 2012. https://doi.org/10.1016/j.eswa.2011.07.123
- Eberhart and Yuhui Shi, “Particle swarm optimization: developments, applications and resources,” no. February 2001, pp. 81–86, 2002. https://doi.org/10.1109/CEC.2001.934374
- F. M. McNeill and E. Thro, Fuzzy Logic: A Practical Approach. Elsevier, 1994. https://doi.org/10.1016/C2013-0-11164-6
- A. Mottahedi, F. Sereshki, and M. Ataei, “Overbreak prediction in underground excavations using hybrid ANFIS-PSO model,” Tunnelling and Underground Space Technology, vol. 80. pp. 1–9, 2018. https://doi.org/10.1016/j.tust.2018.05.023
References
S. Cramer, M. Kampouridis, and A. A. Freitas, “Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives,” Appl. Soft Comput., vol. 70, pp. 208–224, Sep. 2018. https://doi.org/10.1016/j.asoc.2018.05.016
N. Diodato and G. Bellocchi, “Decadal modelling of rainfall–runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices,” Glob. Planet. Change, vol. 86–87, pp. 79–91, Apr. 2012. https://doi.org/10.1016/j.gloplacha.2012.02.002
F. Novadiwanti, A. Buono, and A. Faqih, “CNN Optimization Using GA for Rainy Season Onset Prediction Based on GCM Output: Pacitan District,” J. Tanah dan Iklim, vol. 41, no. 1, pp. 69–77, 2017.
S. Chen and X. Zha, “Effects of the ENSO on rainfall erosivity in the Fujian Province of southeast China,” Sci. Total Environ., vol. 621, pp. 1378–1388, Apr. 2018. https://doi.org/10.1016/j.scitotenv.2017.10.090
E. V. Garov, N. G. Sidorina, E. E. Zagorskaya, P. A. Sudarev, and A. S. Meparishvili, “The prevalence of tympanosclerosis and the effectiveness of its surgical treatment,” Vestn. Otorinolaringol., vol. 82, no. 2, p. 4, 2017. https://doi.org/10.17116/otorino20178224-10
Y. Xiang, L. Gou, L. He, S. Xia, and W. Wang, “A SVR–ANN combined model based on ensemble EMD for rainfall prediction,” Appl. Soft Comput., vol. 73, pp. 874–883, Dec. 2018. https://doi.org/10.1016/j.asoc.2018.09.018
Y. Dash, S. K. Mishra, and B. K. Panigrahi, “Rainfall prediction for the Kerala state of India using artificial intelligence approaches,” Computers and Electrical Engineering, vol. 70. pp. 66–73, 2018. https://doi.org/10.1016/j.compeleceng.2018.06.004
A. El-Shafie, O. Jaafer, and A. Seyed, “Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia,” Int. J. Phys. Sci., vol. 6, no. 12, pp. 2875–2888, 2011. https://doi.org/10.5897/IJPS11.515
H. R. Jamshidi, A. Karimi, and M. Haghshenas, “Risk assessment of particulate matters in a dentistry school using fuzzy inference systems,” Measurement, vol. 116, pp. 257–263, Feb. 2018. https://doi.org/10.1016/j.measurement.2017.11.010
E. Egrioglu, E. Bas, O. C. Yolcu, and U. Yolcu, “Intuitionistic time series fuzzy inference system,” Eng. Appl. Artif. Intell., vol. 82, pp. 175–183, Jun. 2019. https://doi.org/10.1016/j.engappai.2019.03.024
A. MahmoumGonbadi, Y. Katebi, and A. Doniavi, “A generic two-stage fuzzy inference system for dynamic prioritization of customers,” Expert Syst. Appl., vol. 131, pp. 240–253, Oct. 2019. https://doi.org/10.1016/j.eswa.2019.04.059
A. Ilham, R. Wahono, C. Supriyanto, and A. Wijaya, “U-control Chart Based Differential Evolution Clustering for Determining the Number of Cluster in k -Means,” Int. J. Intell. Eng. Syst., vol. 12, no. 4, pp. 306–316, Aug. 2019. https://doi.org/10.22266/ijies2019.0831.28
Y. Gupta and A. Saini, “A novel Fuzzy-PSO term weighting automatic query expansion approach using combined semantic filtering,” Knowledge-Based Syst., vol. 136, pp. 97–120, Nov. 2017. https://doi.org/10.1016/j.jhydrol.2015.04.047
X. He, H. Guan, and J. Qin, “A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall,” J. Hydrol., vol. 527, pp. 88–100, Aug. 2015. https://doi.org/10.1016/j.jhydrol.2015.04.047
J. M. Keller, D. Liu, and D. B. Fogel, Fuzzy Controllers Handbook. Elsevier, 1997. https://doi.org/10.1016/B978-0-7506-3429-8.X5002-7
M. F. Azeem, Fuzzy Inference System - Theory and Applications. InTech, 2012. https://doi.org/10.5772/2341
R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995. https://doi.org/10.1109/MHS.1995.494215
T. Cura, “A particle swarm optimization approach to clustering,” Expert Syst. Appl., vol. 39, no. 1, pp. 1582–1588, 2012. https://doi.org/10.1016/j.eswa.2011.07.123
Eberhart and Yuhui Shi, “Particle swarm optimization: developments, applications and resources,” no. February 2001, pp. 81–86, 2002. https://doi.org/10.1109/CEC.2001.934374
F. M. McNeill and E. Thro, Fuzzy Logic: A Practical Approach. Elsevier, 1994. https://doi.org/10.1016/C2013-0-11164-6
A. Mottahedi, F. Sereshki, and M. Ataei, “Overbreak prediction in underground excavations using hybrid ANFIS-PSO model,” Tunnelling and Underground Space Technology, vol. 80. pp. 1–9, 2018. https://doi.org/10.1016/j.tust.2018.05.023