Classification of Lexile Level Reading Load Using the K-Means Clustering and Random Forest Method
Corresponding Author(s) : Moch Rajendra Yudhistira
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 2, May 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Oakhill, “Children’s difficulties in reading comprehension,” Educational Psychology Review, Vol. 5, No. 3, Pp. 223–237, 1993. https://doi.org/10.1007/BF01323045
- K. Glasswell and M. P. Ford, “Teaching flexibly with leveled texts: More power for your reading block,” The Reading Teacher, Vol. 64, No. 1, Pp. 57–60, 2010. https://doi.org/10.1598/RT.64.1.7
- C. Lennon and H. Burdick, “The lexile framework as an approach for reading measurement and success,” electronic publication on www. lexile. com, 2004.
- M. Awad and R. Khanna, Efficient learning machines: theories, concepts, and applications for engineers and system designers. Apress, 2015. https://dx.doi.org/10.1007/978-1-4302-5990-9
- S. Yaram, “Machine learning algorithms for document clustering and fraud detection,” in 2016 International Conference on Data Science and Engineering (ICDSE), Pp. 1–6, 2016. https://doi.org/10.1109/ICDSE.2016.7823950
- M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?,” Journal of Machine Learning Research, Vol. 15, Pp. 3133–3181, 2014.
- L. Breiman, “Random Forests,” Machine Learning, Vol. 45, No. 1, Pp. 5–32, Oct. 2001. https://doi.org/10.1023/A:1010933404324
- J. R. Quinlan, “Induction of decision trees,” Mach Learn, Vol. 1, No. 1, Pp. 81–106, Mar. 1986. https://doi.org/10.1007/BF00116251
- B. Wang, “a new clustering algorithm compared with the simple K-Means,” in 2009 International Conference on Management and Service Science, Pp. 1–5, 2009. https://doi.org/10.1109/ICMSS.2009.5302386
- I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016. https://doi.org/10.1016/C2009-0-19715-5
- S. Robertson, “Understanding inverse document frequency: on theoretical arguments for IDF,” Journal of Documentation, Vol. 60, No. 5, Pp. 503–520, Oct. 2004. https://doi.org/10.1108/00220410410560582
- Z. K. A. Baizal, M. A. Bijaksana, and A. S. Sastrawan, “Analisis pengaruh metode over sampling dalam churn prediction untuk perusahaan telekomunikasi,” Jurnal Fakultas Hukum UII, 2009.
- W. Zhu, J. Feng, and Y. Lin, “Using Gini-Index for Feature Selection in Text Categorization,” presented at the 2014 International Conference on Information, Business and Education Technology (ICIBET 2014), 2014. https://dx.doi.org/10.2991/icibet-14.2014.22
- A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, “First order random forests: Learning relational classifiers with complex aggregates,” Mach Learn, Vol. 64, No. 1, Pp. 149–182, Sep. 2006.
- L. Breiman, “Bagging Predictors,” Machine Learning, Vol. 24, No. 2, Pp. 123–140, Aug. 1996. https://doi.org/10.1023/A:1018054314350
- U. Pujianto, “Random forest and novel under-sampling strategy for data imbalance in software defect prediction,” International Journal of Engineering and Technology(UAE), Vol. 7, Pp. 39–42, Jan. 2018. http://dx.doi.org/10.14419/ijet.v7i4.15.21368
- E. Olivetti, S. Greiner, and P. Avesani, “Statistical independence for the evaluation of classifier-based diagnosis,” Brain Inf., Vol. 2, No. 1, Pp. 13–19, Mar. 2015. https://doi.org/10.1007/s40708-014-0007-6
References
J. Oakhill, “Children’s difficulties in reading comprehension,” Educational Psychology Review, Vol. 5, No. 3, Pp. 223–237, 1993. https://doi.org/10.1007/BF01323045
K. Glasswell and M. P. Ford, “Teaching flexibly with leveled texts: More power for your reading block,” The Reading Teacher, Vol. 64, No. 1, Pp. 57–60, 2010. https://doi.org/10.1598/RT.64.1.7
C. Lennon and H. Burdick, “The lexile framework as an approach for reading measurement and success,” electronic publication on www. lexile. com, 2004.
M. Awad and R. Khanna, Efficient learning machines: theories, concepts, and applications for engineers and system designers. Apress, 2015. https://dx.doi.org/10.1007/978-1-4302-5990-9
S. Yaram, “Machine learning algorithms for document clustering and fraud detection,” in 2016 International Conference on Data Science and Engineering (ICDSE), Pp. 1–6, 2016. https://doi.org/10.1109/ICDSE.2016.7823950
M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?,” Journal of Machine Learning Research, Vol. 15, Pp. 3133–3181, 2014.
L. Breiman, “Random Forests,” Machine Learning, Vol. 45, No. 1, Pp. 5–32, Oct. 2001. https://doi.org/10.1023/A:1010933404324
J. R. Quinlan, “Induction of decision trees,” Mach Learn, Vol. 1, No. 1, Pp. 81–106, Mar. 1986. https://doi.org/10.1007/BF00116251
B. Wang, “a new clustering algorithm compared with the simple K-Means,” in 2009 International Conference on Management and Service Science, Pp. 1–5, 2009. https://doi.org/10.1109/ICMSS.2009.5302386
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016. https://doi.org/10.1016/C2009-0-19715-5
S. Robertson, “Understanding inverse document frequency: on theoretical arguments for IDF,” Journal of Documentation, Vol. 60, No. 5, Pp. 503–520, Oct. 2004. https://doi.org/10.1108/00220410410560582
Z. K. A. Baizal, M. A. Bijaksana, and A. S. Sastrawan, “Analisis pengaruh metode over sampling dalam churn prediction untuk perusahaan telekomunikasi,” Jurnal Fakultas Hukum UII, 2009.
W. Zhu, J. Feng, and Y. Lin, “Using Gini-Index for Feature Selection in Text Categorization,” presented at the 2014 International Conference on Information, Business and Education Technology (ICIBET 2014), 2014. https://dx.doi.org/10.2991/icibet-14.2014.22
A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, “First order random forests: Learning relational classifiers with complex aggregates,” Mach Learn, Vol. 64, No. 1, Pp. 149–182, Sep. 2006.
L. Breiman, “Bagging Predictors,” Machine Learning, Vol. 24, No. 2, Pp. 123–140, Aug. 1996. https://doi.org/10.1023/A:1018054314350
U. Pujianto, “Random forest and novel under-sampling strategy for data imbalance in software defect prediction,” International Journal of Engineering and Technology(UAE), Vol. 7, Pp. 39–42, Jan. 2018. http://dx.doi.org/10.14419/ijet.v7i4.15.21368
E. Olivetti, S. Greiner, and P. Avesani, “Statistical independence for the evaluation of classifier-based diagnosis,” Brain Inf., Vol. 2, No. 1, Pp. 13–19, Mar. 2015. https://doi.org/10.1007/s40708-014-0007-6