Multi-scale Entropy and Multiclass Fisher’s Linear Discriminant for Emotion Recognition Based on Multimodal Signal
Corresponding Author(s) : Lutfi Hakim
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 1, February 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. D. Pressman and S. Cohen, “Does positive affect influence health?,” Psychol. Bull., vol. 131, no. 6, pp. 925–971, 2005. https://doi.org/10.1037/0033-2909.131.6.925
- S. D. Kreibig, “Autonomic nervous system activity in emotion: A review,” Biol. Psychol., vol. 84, no. 3, pp. 394–421, 2010. https://doi.org/10.1016/j.biopsycho.2010.03.010
- S. Begum, S. Barua, and M. U. Ahmed, “Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning,” Sensors (Switzerland), vol. 14, no. 7, pp. 11770–11785, 2014. https://doi.org/10.3390/s140711770
- W. Huang, G. Liu, and W. Wen, “MAPD: A Multi-subject Affective Physiological Database,” Proc. - 2014 7th Int. Symp. Comput. Intell. Des. Isc. 2014, vol. 2, pp. 585–589, 2015. https://doi.org/10.1109/ISCID.2014.247
- W. Wen, G. Liu, N. Cheng, J. Wei, P. Shangguan, and W. Huang, “Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals,” IEEE Trans. Affect. Comput., vol. 5, no. 2, pp. 126–139, 2014. https://doi.org/10.1109/TAFFC.2014.2327617
- A. Marzuki, L. D. Rumpa, A. D. Wibawa, and M. H. Purnomo, “Classification of human state emotion from physiological signal pattern using pulse sensor based on learning vector,” Int. Semin. Intell. Technol. Its Appl., pp. 129–133, 2016. https://doi.org/10.1109/ISITIA.2016.7828646
- L. Hakim, A. D. Wibawa, E. Septiana Pane, and M. H. Purnomo, “Emotion Recognition in Elderly Based on SpO2 and Pulse Rate Signals Using Support Vector Machine,” Proc. - 17th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2018, pp. 474–479, 2018. https://doi.org/10.1109/ICIS.2018.8466489
- A. Jubran, “Pulse oximetry,” Crit. Care, vol. 19, no. 1, pp. 1–7, 2015. https://doi.org/10.1186/s13054-015-0984-8
- M. Costa, A. L. Goldberger, C. Peng, B. Israel, and D. Medical, “Multiscale Entropy Analysis ( MSE ),” Entropy, no. 1, pp. 1–8, 2003.
- M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series.,” Phys. Rev. Lett., vol. 89, no. 6, p. 68102, 2002. https://doi.org/10.1103/PhysRevLett.89.068102
- M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 71, no. 2, pp. 1–18, 2005. https://doi.org/10.1103/PhysRevE.71.021906
- A. B. Liu, H. T. Wu, C. W. Liu, C. C. Liu, C. J. Tang, I. T. Tsai, and C. K. Sun, “Application of multiscale entropy in arterial waveform contour analysis in healthy and diabetic subjects,” Med. Biol. Eng. Comput., vol. 53, no. 1, pp. 89–98, 2015. https://doi.org/10.1007/s11517-014-1220-4
- A. S. Bhogal and A. R. Mani, “Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals : Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation,” vol. 8, no. August, pp. 1–9, 2017. https://doi.org/10.3389/fphys.2017.00555
- E. S. Pane, A. D. Wibawa, and M. H. Purnomo, “Peningkatan Akurasi Pengenalan Emosi pada Sinyal Electroencephalograpy Menggunakan Multiclass Fisher Discriminant Analysis,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 4, pp. 437–443, 2019. http://dx.doi.org/10.22146/jnteti.v7i4.462
- C.-E. Kuo, S.-F. Liang, Y.-H. Shih, and F.-Z. Shaw, “Evaluating the Sleep Quality Using Multiscale Entropy Analysis,” IFMBE Proc., vol. 47, pp. 166–169, 2015. https://doi.org/10.1007/978-3-319-12262-5_46
- T. Murata, M. Kikuchi, K. Takahashi, T. Mizuno, Y. Wada, R. Y. Cho, and T. Takahashi, “Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy,” Clin. Neurophysiol., vol. 121, no. 9, pp. 1438–1446, 2010. https://doi.org/10.1016/j.clinph.2010.03.025
- K. Michalopoulos and N. Bourbakis, “Application of Multiscale Entropy on EEG Signals for Emotion Detection,” IEEE EMBS Int. Conf. Biomed. Heal. Informatics Proc., no. 5, pp. 341–344, 2017. https://doi.org/10.1109/BHI.2017.7897275
- J. S. Richman, D. E. Lake, and J. R. Moorman, “Sample Entropy,” Methods Enzymol., vol. 384, no. 1991, pp. 172–184, 2004. https://doi.org/10.1016/S0076-6879(04)84011-4
- M. Welling, “Fisher linear discriminant analysis.” Toronto, 2005.
- C. Li and B. Wang, “Fisher Linear Discriminant Analysis.” pp. 1–6, 2014.
- I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Fourth Edition Data Mining: Practical Machine Learning Tools and Techniques, Fourth. Cambridge: Todd Green, 2017.
- V. Vapnik and C. Cortes, “Support Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995. https://doi.org/10.1007/BF00994018
- C. Chang and C. Lin, “LIBSVM : A Library for Support Vector Machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 1–39, 2013.
- C.-W. Hsu, C.-C. Chang, and C. Lin, “A Practical Guide to Support Vector Classification,” BJU Int., vol. 101, no. 1, pp. 1396–400, 2008.
- P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, New York: Springer Science+Business Media, LLC, 2009, pp. 532–538. https://doi.org/10.1007/978-0-387-39940-9
References
S. D. Pressman and S. Cohen, “Does positive affect influence health?,” Psychol. Bull., vol. 131, no. 6, pp. 925–971, 2005. https://doi.org/10.1037/0033-2909.131.6.925
S. D. Kreibig, “Autonomic nervous system activity in emotion: A review,” Biol. Psychol., vol. 84, no. 3, pp. 394–421, 2010. https://doi.org/10.1016/j.biopsycho.2010.03.010
S. Begum, S. Barua, and M. U. Ahmed, “Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning,” Sensors (Switzerland), vol. 14, no. 7, pp. 11770–11785, 2014. https://doi.org/10.3390/s140711770
W. Huang, G. Liu, and W. Wen, “MAPD: A Multi-subject Affective Physiological Database,” Proc. - 2014 7th Int. Symp. Comput. Intell. Des. Isc. 2014, vol. 2, pp. 585–589, 2015. https://doi.org/10.1109/ISCID.2014.247
W. Wen, G. Liu, N. Cheng, J. Wei, P. Shangguan, and W. Huang, “Emotion Recognition Based on Multi-Variant Correlation of Physiological Signals,” IEEE Trans. Affect. Comput., vol. 5, no. 2, pp. 126–139, 2014. https://doi.org/10.1109/TAFFC.2014.2327617
A. Marzuki, L. D. Rumpa, A. D. Wibawa, and M. H. Purnomo, “Classification of human state emotion from physiological signal pattern using pulse sensor based on learning vector,” Int. Semin. Intell. Technol. Its Appl., pp. 129–133, 2016. https://doi.org/10.1109/ISITIA.2016.7828646
L. Hakim, A. D. Wibawa, E. Septiana Pane, and M. H. Purnomo, “Emotion Recognition in Elderly Based on SpO2 and Pulse Rate Signals Using Support Vector Machine,” Proc. - 17th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2018, pp. 474–479, 2018. https://doi.org/10.1109/ICIS.2018.8466489
A. Jubran, “Pulse oximetry,” Crit. Care, vol. 19, no. 1, pp. 1–7, 2015. https://doi.org/10.1186/s13054-015-0984-8
M. Costa, A. L. Goldberger, C. Peng, B. Israel, and D. Medical, “Multiscale Entropy Analysis ( MSE ),” Entropy, no. 1, pp. 1–8, 2003.
M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series.,” Phys. Rev. Lett., vol. 89, no. 6, p. 68102, 2002. https://doi.org/10.1103/PhysRevLett.89.068102
M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 71, no. 2, pp. 1–18, 2005. https://doi.org/10.1103/PhysRevE.71.021906
A. B. Liu, H. T. Wu, C. W. Liu, C. C. Liu, C. J. Tang, I. T. Tsai, and C. K. Sun, “Application of multiscale entropy in arterial waveform contour analysis in healthy and diabetic subjects,” Med. Biol. Eng. Comput., vol. 53, no. 1, pp. 89–98, 2015. https://doi.org/10.1007/s11517-014-1220-4
A. S. Bhogal and A. R. Mani, “Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals : Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation,” vol. 8, no. August, pp. 1–9, 2017. https://doi.org/10.3389/fphys.2017.00555
E. S. Pane, A. D. Wibawa, and M. H. Purnomo, “Peningkatan Akurasi Pengenalan Emosi pada Sinyal Electroencephalograpy Menggunakan Multiclass Fisher Discriminant Analysis,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 7, no. 4, pp. 437–443, 2019. http://dx.doi.org/10.22146/jnteti.v7i4.462
C.-E. Kuo, S.-F. Liang, Y.-H. Shih, and F.-Z. Shaw, “Evaluating the Sleep Quality Using Multiscale Entropy Analysis,” IFMBE Proc., vol. 47, pp. 166–169, 2015. https://doi.org/10.1007/978-3-319-12262-5_46
T. Murata, M. Kikuchi, K. Takahashi, T. Mizuno, Y. Wada, R. Y. Cho, and T. Takahashi, “Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy,” Clin. Neurophysiol., vol. 121, no. 9, pp. 1438–1446, 2010. https://doi.org/10.1016/j.clinph.2010.03.025
K. Michalopoulos and N. Bourbakis, “Application of Multiscale Entropy on EEG Signals for Emotion Detection,” IEEE EMBS Int. Conf. Biomed. Heal. Informatics Proc., no. 5, pp. 341–344, 2017. https://doi.org/10.1109/BHI.2017.7897275
J. S. Richman, D. E. Lake, and J. R. Moorman, “Sample Entropy,” Methods Enzymol., vol. 384, no. 1991, pp. 172–184, 2004. https://doi.org/10.1016/S0076-6879(04)84011-4
M. Welling, “Fisher linear discriminant analysis.” Toronto, 2005.
C. Li and B. Wang, “Fisher Linear Discriminant Analysis.” pp. 1–6, 2014.
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Fourth Edition Data Mining: Practical Machine Learning Tools and Techniques, Fourth. Cambridge: Todd Green, 2017.
V. Vapnik and C. Cortes, “Support Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995. https://doi.org/10.1007/BF00994018
C. Chang and C. Lin, “LIBSVM : A Library for Support Vector Machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 1–39, 2013.
C.-W. Hsu, C.-C. Chang, and C. Lin, “A Practical Guide to Support Vector Classification,” BJU Int., vol. 101, no. 1, pp. 1396–400, 2008.
P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, New York: Springer Science+Business Media, LLC, 2009, pp. 532–538. https://doi.org/10.1007/978-0-387-39940-9