
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
YOLOv9-Assisted Vision System for Health Assessment in Poultry Using Deep Neural Networks
Corresponding Author(s) : Pola Risma
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 11, No. 1, February 2026 (Article in Progress)
Abstract
Poultry farming represents one of the fastest growing sectors in global food production, yet disease outbreaks, high mortality, and labor shortages continue to threaten its sustainability. Conventional health monitoring methods based on visual inspection are time-consuming, subjective, and inadequate for early anomaly detection. In response, computer vision and deep learning have emerged as transformative tools for livestock management. While prior implementations of the YOLO object detection family, such as YOLOv5 and YOLOv8, have achieved notable success, their performance often deteriorates in dense flocks, low-light conditions, and occlusion-prone environments. This study introduces a YOLOv9-assisted vision framework tailored for poultry health assessment in commercial farm settings. The system integrates smart cameras with edge computing to enable real-time detection of behavioral and physiological anomalies without dependence on high-bandwidth or cloud-based resources. A dataset of 903 annotated poultry images, categorized into healthy and sick classes, was employed for model development. The trained model achieved 88.7% precision, 97% recall, an F1-score of 0.82, and a mAP@0.5 of 0.88, demonstrating robustness under variable illumination, bird occlusion, and high-density environments. Comparative evaluation confirmed that YOLOv9 provides a superior balance of accuracy, generalization, and computational efficiency relative to YOLOv8–YOLOv11, supporting practical deployment on edge devices. Limitations include the binary scope of health classification and reliance on a single dataset. Future directions involve extending the framework to multi-class disease recognition, cross-dataset validation, behavior-based temporal modeling, and multimodal fusion, advancing predictive analytics and welfare-oriented poultry farming.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ahmed, M. M., Hassanein, E. E., & Hassanein, A. E. (2024). A smart IoT-based monitoring system in poultry farms using chicken behavioural analysis. Internet of Things, 25, 101010. https://doi.org/10.1016/j.iot.2023.101010
- Altarez, R. (2024). Faster R-CNN, RetinaNet and Single Shot Detector in different ResNet backbones for marine vessel detection using cross polarization C-band SAR imagery. Remote Sensing Applications: Society and Environment, 36, 101297. https://doi.org/10.1016/j.rsase.2024.101297
- Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. https://doi.org/10.1016/j.compag.2020.105291
- Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956. https://doi.org/10.1016/j.jclepro.2022.129956
- Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://arxiv.org/abs/2004.10934
- Bumbálek, R., Umurungi, S. N., Ufitikirezi, J. D. D. M., Zoubek, T., Kuneš, R., Stehlík, R., Lin, H.-I., & Bartoš, P. (2025). Deep learning in poultry farming: Comparative analysis of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for dead chickens detection. Poultry Science, 104, Article 105440. https://doi.org/10.1016/j.psj.2025.105440
- Dewi, T., Mardiyati, E. N., Risma, P., & Oktarina, Y. (2025). Hybrid machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system. Energy Conversion and Management, 330, 119663. https://doi.org/10.1016/j.enconman.2024.119663
- Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E. N., Br Sianipar, A., Hibrizi, D. R., Azhar, M. S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. https://doi.org/10.1016/j.esd.2024.101683
- Fang, C., Zhang, T., Zheng, H., Huang, J., & Cuan, K. (2020). Pose estimation and behavior classification of broiler chickens based on deep neural networks. Computers and Electronics in Agriculture, 180, 105863. https://doi.org/10.1016/j.compag.2020.105863
- Farrelly Mitchell. (2025). The biggest challenges facing the poultry industry. Retrieved from https://farrellymitchell.com/technology-and-innovation/challenges-facing-the-poultry-industry/
- Guo, Y., Aggrey, S. E., Yang, X., Oladeinde, A., Qiao, Y., & Chai, L. (2023). Detecting broiler chickens on litter floor with the YOLOv5-CBAM deep learning model. Artificial Intelligence in Agriculture, 9, 36–45. https://doi.org/10.1016/j.aiia.2023.08.002
- Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516. https://doi.org/10.3389/fvets.2020.00516
- Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., & Wang, J. (2021). Development status and trend of agricultural robot technology. International Journal of Agricultural and Biological Engineering, 14(2), 1–19. DOI: 10.25165/j.ijabe.20211404.6821
- Chatraphuj, K., Meshram, K., Mishra, U., & Rathnayake, U. (2025). Application of artificial intelligence in agri-tech, environmental and biodiversity conservation. Array, 26, 100412. https://doi.org/10.1016/j.array.2025.100412
- FKucukkara, Z., Ozkan, I. A., Tasdemir, S., & Ceylan, O. (2025). Classification of chicken Eimeria species through deep transfer learning models: A comparative study on model efficacy. Veterinary Parasitology, 334, 110400. https://doi.org/10.1016/j.vetpar.2025.110400
- Li, J., Zhang, Y., Zhang, Y., Shi, H., Song, X., & Peng, C. (2025). MIF-YOLO: An enhanced YOLO with multi-source image fusion for autonomous dead chicken detection. Smart Agricultural Technology, 12, 101104. https://doi.org/10.1016/j.atech.2025.101104
- Love, D. C., Fry, J. P., Li, X. M., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
- Masykur, A., Ratriyanto, A., Widyas, N., & Prastowo, S. (2022). Application of nonlinear predictive models for egg production of quail receiving diets supplemented with silica+ or betaine in a tropical environment. European Poultry Science, 86, 1–12. https://doi.org/10.1399/eps.2022.352
- Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. https://doi.org/10.1016/j.compag.2016.03.003
- Pallerla, C., Feng, Y., Owens, C. M., Bist, R. B., Mahmoudi, S., Sohrabipour, P., Davar, A., & Wang, D. (2024). Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogeneous property-aware chicken woody breast classification and hardness regression. Artificial Intelligence in Agriculture, 14, 73–85. https://doi.org/10.1016/j.aiia.2024.11.003
- Dawkins, M. S. (2025). Smart farming and Artificial Intelligence (AI): How can we ensure that animal welfare is a priority? Applied Animal Behaviour Science, 283, 106519. https://doi.org/10.1016/j.applanim.2025.106519.
- Ren, G., Lin, T., Ying, Y., Chowdhary, G., & Ting, K. C. (2020). Agricultural robotics research applicable to poultry production: A review. Computers and Electronics in Agriculture, 169, 105216. https://doi.org/10.1016/j.compag.2019.105216
- Salama, N. K. G., Murray, A. G., Christie, A. J., & Wallace, I. S. (2016). Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture, 450, 283–288. https://doi.org/10.1016/j.aquaculture.2015.07.023
- Shams, M. Y., Elmessery, W. M., Oraiat, A. A. T., Elbeltagi, A., Salem, A., Kumar, P., El-Messery, T. M., El-Hafeez, T. A. A., Abdelshafie, M. F., Abd El-Wahhab, G. A., El-Soaly, I. S., & Elwakeel, A. E. (2025). Automated on-site broiler live weight estimation through YOLO-based segmentation. Smart Agricultural Technology, 10, 100828. https://doi.org/10.1016/j.atech.2025.100828
- Taleb, H. M., Mahrose, K. M., Abdel-Halim, A. A., & Abd El-Hack, M. E. (2024). Using artificial intelligence to improve poultry productivity – A review. Annals of Animal Science, 24(2), 395–412. https://doi.org/10.2478/aoas-2024-0039
- Wang, P., Wu, P., Wang, C., Huang, X., Wang, L., Li, C., Niu, Q., & Li, H. (2025). Chicken body temperature monitoring method in complex environment based on multi-source image fusion and deep learning. Computers and Electronics in Agriculture, 228, 109689. https://doi.org/10.1016/j.compag.2024.109689
- Wongtangtintharn, S., Chakkhambang, S., Pootthachaya, P., Cherdthong, A., & Wanapat, M. (2025). Challenges and constraints to the sustainability of poultry farming in Thailand. Animal Bioscience, 38(4), 845–862. https://www.animbiosci.org/journal/view.php?number=25408
- Yang, J., Zhang, T., Fang, C., & Zheng, H. (2023). A defencing algorithm based on deep learning improves the detection accuracy of caged chickens. Computers and Electronics in Agriculture, 204, 107501. https://doi.org/10.1016/j.compag.2022.107501
- Yep, B., & Zheng, Y. B. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290
- Zhou, Z., Hu, Y., Yang, X., & Yang, J. (2024). YOLO-based marine organism detection using two-terminal attention mechanism and difficult-sample resampling. Applied Soft Computing, 153, 111291. https://doi.org/10.1016/j.asoc.2024.111291
References
Ahmed, M. M., Hassanein, E. E., & Hassanein, A. E. (2024). A smart IoT-based monitoring system in poultry farms using chicken behavioural analysis. Internet of Things, 25, 101010. https://doi.org/10.1016/j.iot.2023.101010
Altarez, R. (2024). Faster R-CNN, RetinaNet and Single Shot Detector in different ResNet backbones for marine vessel detection using cross polarization C-band SAR imagery. Remote Sensing Applications: Society and Environment, 36, 101297. https://doi.org/10.1016/j.rsase.2024.101297
Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. https://doi.org/10.1016/j.compag.2020.105291
Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956. https://doi.org/10.1016/j.jclepro.2022.129956
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://arxiv.org/abs/2004.10934
Bumbálek, R., Umurungi, S. N., Ufitikirezi, J. D. D. M., Zoubek, T., Kuneš, R., Stehlík, R., Lin, H.-I., & Bartoš, P. (2025). Deep learning in poultry farming: Comparative analysis of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for dead chickens detection. Poultry Science, 104, Article 105440. https://doi.org/10.1016/j.psj.2025.105440
Dewi, T., Mardiyati, E. N., Risma, P., & Oktarina, Y. (2025). Hybrid machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system. Energy Conversion and Management, 330, 119663. https://doi.org/10.1016/j.enconman.2024.119663
Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E. N., Br Sianipar, A., Hibrizi, D. R., Azhar, M. S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. https://doi.org/10.1016/j.esd.2024.101683
Fang, C., Zhang, T., Zheng, H., Huang, J., & Cuan, K. (2020). Pose estimation and behavior classification of broiler chickens based on deep neural networks. Computers and Electronics in Agriculture, 180, 105863. https://doi.org/10.1016/j.compag.2020.105863
Farrelly Mitchell. (2025). The biggest challenges facing the poultry industry. Retrieved from https://farrellymitchell.com/technology-and-innovation/challenges-facing-the-poultry-industry/
Guo, Y., Aggrey, S. E., Yang, X., Oladeinde, A., Qiao, Y., & Chai, L. (2023). Detecting broiler chickens on litter floor with the YOLOv5-CBAM deep learning model. Artificial Intelligence in Agriculture, 9, 36–45. https://doi.org/10.1016/j.aiia.2023.08.002
Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516. https://doi.org/10.3389/fvets.2020.00516
Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., & Wang, J. (2021). Development status and trend of agricultural robot technology. International Journal of Agricultural and Biological Engineering, 14(2), 1–19. DOI: 10.25165/j.ijabe.20211404.6821
Chatraphuj, K., Meshram, K., Mishra, U., & Rathnayake, U. (2025). Application of artificial intelligence in agri-tech, environmental and biodiversity conservation. Array, 26, 100412. https://doi.org/10.1016/j.array.2025.100412
FKucukkara, Z., Ozkan, I. A., Tasdemir, S., & Ceylan, O. (2025). Classification of chicken Eimeria species through deep transfer learning models: A comparative study on model efficacy. Veterinary Parasitology, 334, 110400. https://doi.org/10.1016/j.vetpar.2025.110400
Li, J., Zhang, Y., Zhang, Y., Shi, H., Song, X., & Peng, C. (2025). MIF-YOLO: An enhanced YOLO with multi-source image fusion for autonomous dead chicken detection. Smart Agricultural Technology, 12, 101104. https://doi.org/10.1016/j.atech.2025.101104
Love, D. C., Fry, J. P., Li, X. M., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
Masykur, A., Ratriyanto, A., Widyas, N., & Prastowo, S. (2022). Application of nonlinear predictive models for egg production of quail receiving diets supplemented with silica+ or betaine in a tropical environment. European Poultry Science, 86, 1–12. https://doi.org/10.1399/eps.2022.352
Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. https://doi.org/10.1016/j.compag.2016.03.003
Pallerla, C., Feng, Y., Owens, C. M., Bist, R. B., Mahmoudi, S., Sohrabipour, P., Davar, A., & Wang, D. (2024). Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogeneous property-aware chicken woody breast classification and hardness regression. Artificial Intelligence in Agriculture, 14, 73–85. https://doi.org/10.1016/j.aiia.2024.11.003
Dawkins, M. S. (2025). Smart farming and Artificial Intelligence (AI): How can we ensure that animal welfare is a priority? Applied Animal Behaviour Science, 283, 106519. https://doi.org/10.1016/j.applanim.2025.106519.
Ren, G., Lin, T., Ying, Y., Chowdhary, G., & Ting, K. C. (2020). Agricultural robotics research applicable to poultry production: A review. Computers and Electronics in Agriculture, 169, 105216. https://doi.org/10.1016/j.compag.2019.105216
Salama, N. K. G., Murray, A. G., Christie, A. J., & Wallace, I. S. (2016). Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture, 450, 283–288. https://doi.org/10.1016/j.aquaculture.2015.07.023
Shams, M. Y., Elmessery, W. M., Oraiat, A. A. T., Elbeltagi, A., Salem, A., Kumar, P., El-Messery, T. M., El-Hafeez, T. A. A., Abdelshafie, M. F., Abd El-Wahhab, G. A., El-Soaly, I. S., & Elwakeel, A. E. (2025). Automated on-site broiler live weight estimation through YOLO-based segmentation. Smart Agricultural Technology, 10, 100828. https://doi.org/10.1016/j.atech.2025.100828
Taleb, H. M., Mahrose, K. M., Abdel-Halim, A. A., & Abd El-Hack, M. E. (2024). Using artificial intelligence to improve poultry productivity – A review. Annals of Animal Science, 24(2), 395–412. https://doi.org/10.2478/aoas-2024-0039
Wang, P., Wu, P., Wang, C., Huang, X., Wang, L., Li, C., Niu, Q., & Li, H. (2025). Chicken body temperature monitoring method in complex environment based on multi-source image fusion and deep learning. Computers and Electronics in Agriculture, 228, 109689. https://doi.org/10.1016/j.compag.2024.109689
Wongtangtintharn, S., Chakkhambang, S., Pootthachaya, P., Cherdthong, A., & Wanapat, M. (2025). Challenges and constraints to the sustainability of poultry farming in Thailand. Animal Bioscience, 38(4), 845–862. https://www.animbiosci.org/journal/view.php?number=25408
Yang, J., Zhang, T., Fang, C., & Zheng, H. (2023). A defencing algorithm based on deep learning improves the detection accuracy of caged chickens. Computers and Electronics in Agriculture, 204, 107501. https://doi.org/10.1016/j.compag.2022.107501
Yep, B., & Zheng, Y. B. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290
Zhou, Z., Hu, Y., Yang, X., & Yang, J. (2024). YOLO-based marine organism detection using two-terminal attention mechanism and difficult-sample resampling. Applied Soft Computing, 153, 111291. https://doi.org/10.1016/j.asoc.2024.111291