Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 11, No. 1, February 2026 (Article in Progress)
  4. Articles

Issue

Vol. 11, No. 1, February 2026 (Article in Progress)

Issue Published : Jan 24, 2026
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

YOLOv9-Assisted Vision System for Health Assessment in Poultry Using Deep Neural Networks

https://doi.org/10.22219/kinetik.v11i1.2414
Pola Risma
Politeknik Negeri Sriwijaya
Tegar Prasetyo
Politeknik Negeri Sriwijaya
Yahya Muhammad Amri
Politeknik Negeri Sriwijaya

Corresponding Author(s) : Pola Risma

polarisma@polsri.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 11, No. 1, February 2026 (Article in Progress)
Article Published : Jan 24, 2026

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Poultry farming represents one of the fastest growing sectors in global food production, yet disease outbreaks, high mortality, and labor shortages continue to threaten its sustainability. Conventional health monitoring methods based on visual inspection are time-consuming, subjective, and inadequate for early anomaly detection. In response, computer vision and deep learning have emerged as transformative tools for livestock management. While prior implementations of the YOLO object detection family, such as YOLOv5 and YOLOv8, have achieved notable success, their performance often deteriorates in dense flocks, low-light conditions, and occlusion-prone environments. This study introduces a YOLOv9-assisted vision framework tailored for poultry health assessment in commercial farm settings. The system integrates smart cameras with edge computing to enable real-time detection of behavioral and physiological anomalies without dependence on high-bandwidth or cloud-based resources. A dataset of 903 annotated poultry images, categorized into healthy and sick classes, was employed for model development. The trained model achieved 88.7% precision, 97% recall, an F1-score of 0.82, and a mAP@0.5 of 0.88, demonstrating robustness under variable illumination, bird occlusion, and high-density environments. Comparative evaluation confirmed that YOLOv9 provides a superior balance of accuracy, generalization, and computational efficiency relative to YOLOv8–YOLOv11, supporting practical deployment on edge devices. Limitations include the binary scope of health classification and reliance on a single dataset. Future directions involve extending the framework to multi-class disease recognition, cross-dataset validation, behavior-based temporal modeling, and multimodal fusion, advancing predictive analytics and welfare-oriented poultry farming.

Keywords

Deep learning YOLOv9 Object Detection Poultry Health Monitoring Smart Farming
Risma, P., Prasetyo, T., & Muhammad Amri , Y. (2026). YOLOv9-Assisted Vision System for Health Assessment in Poultry Using Deep Neural Networks. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 11(1). https://doi.org/10.22219/kinetik.v11i1.2414
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Ahmed, M. M., Hassanein, E. E., & Hassanein, A. E. (2024). A smart IoT-based monitoring system in poultry farms using chicken behavioural analysis. Internet of Things, 25, 101010. https://doi.org/10.1016/j.iot.2023.101010
  2. Altarez, R. (2024). Faster R-CNN, RetinaNet and Single Shot Detector in different ResNet backbones for marine vessel detection using cross polarization C-band SAR imagery. Remote Sensing Applications: Society and Environment, 36, 101297. https://doi.org/10.1016/j.rsase.2024.101297
  3. Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. https://doi.org/10.1016/j.compag.2020.105291
  4. Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956. https://doi.org/10.1016/j.jclepro.2022.129956
  5. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://arxiv.org/abs/2004.10934
  6. Bumbálek, R., Umurungi, S. N., Ufitikirezi, J. D. D. M., Zoubek, T., Kuneš, R., Stehlík, R., Lin, H.-I., & Bartoš, P. (2025). Deep learning in poultry farming: Comparative analysis of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for dead chickens detection. Poultry Science, 104, Article 105440. https://doi.org/10.1016/j.psj.2025.105440
  7. Dewi, T., Mardiyati, E. N., Risma, P., & Oktarina, Y. (2025). Hybrid machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system. Energy Conversion and Management, 330, 119663. https://doi.org/10.1016/j.enconman.2024.119663
  8. Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E. N., Br Sianipar, A., Hibrizi, D. R., Azhar, M. S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. https://doi.org/10.1016/j.esd.2024.101683
  9. Fang, C., Zhang, T., Zheng, H., Huang, J., & Cuan, K. (2020). Pose estimation and behavior classification of broiler chickens based on deep neural networks. Computers and Electronics in Agriculture, 180, 105863. https://doi.org/10.1016/j.compag.2020.105863
  10. Farrelly Mitchell. (2025). The biggest challenges facing the poultry industry. Retrieved from https://farrellymitchell.com/technology-and-innovation/challenges-facing-the-poultry-industry/
  11. Guo, Y., Aggrey, S. E., Yang, X., Oladeinde, A., Qiao, Y., & Chai, L. (2023). Detecting broiler chickens on litter floor with the YOLOv5-CBAM deep learning model. Artificial Intelligence in Agriculture, 9, 36–45. https://doi.org/10.1016/j.aiia.2023.08.002
  12. Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516. https://doi.org/10.3389/fvets.2020.00516
  13. Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., & Wang, J. (2021). Development status and trend of agricultural robot technology. International Journal of Agricultural and Biological Engineering, 14(2), 1–19. DOI: 10.25165/j.ijabe.20211404.6821
  14. Chatraphuj, K., Meshram, K., Mishra, U., & Rathnayake, U. (2025). Application of artificial intelligence in agri-tech, environmental and biodiversity conservation. Array, 26, 100412. https://doi.org/10.1016/j.array.2025.100412
  15. FKucukkara, Z., Ozkan, I. A., Tasdemir, S., & Ceylan, O. (2025). Classification of chicken Eimeria species through deep transfer learning models: A comparative study on model efficacy. Veterinary Parasitology, 334, 110400. https://doi.org/10.1016/j.vetpar.2025.110400
  16. Li, J., Zhang, Y., Zhang, Y., Shi, H., Song, X., & Peng, C. (2025). MIF-YOLO: An enhanced YOLO with multi-source image fusion for autonomous dead chicken detection. Smart Agricultural Technology, 12, 101104. https://doi.org/10.1016/j.atech.2025.101104
  17. Love, D. C., Fry, J. P., Li, X. M., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
  18. Masykur, A., Ratriyanto, A., Widyas, N., & Prastowo, S. (2022). Application of nonlinear predictive models for egg production of quail receiving diets supplemented with silica+ or betaine in a tropical environment. European Poultry Science, 86, 1–12. https://doi.org/10.1399/eps.2022.352
  19. Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. https://doi.org/10.1016/j.compag.2016.03.003
  20. Pallerla, C., Feng, Y., Owens, C. M., Bist, R. B., Mahmoudi, S., Sohrabipour, P., Davar, A., & Wang, D. (2024). Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogeneous property-aware chicken woody breast classification and hardness regression. Artificial Intelligence in Agriculture, 14, 73–85. https://doi.org/10.1016/j.aiia.2024.11.003
  21. Dawkins, M. S. (2025). Smart farming and Artificial Intelligence (AI): How can we ensure that animal welfare is a priority? Applied Animal Behaviour Science, 283, 106519. https://doi.org/10.1016/j.applanim.2025.106519.
  22. Ren, G., Lin, T., Ying, Y., Chowdhary, G., & Ting, K. C. (2020). Agricultural robotics research applicable to poultry production: A review. Computers and Electronics in Agriculture, 169, 105216. https://doi.org/10.1016/j.compag.2019.105216
  23. Salama, N. K. G., Murray, A. G., Christie, A. J., & Wallace, I. S. (2016). Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture, 450, 283–288. https://doi.org/10.1016/j.aquaculture.2015.07.023
  24. Shams, M. Y., Elmessery, W. M., Oraiat, A. A. T., Elbeltagi, A., Salem, A., Kumar, P., El-Messery, T. M., El-Hafeez, T. A. A., Abdelshafie, M. F., Abd El-Wahhab, G. A., El-Soaly, I. S., & Elwakeel, A. E. (2025). Automated on-site broiler live weight estimation through YOLO-based segmentation. Smart Agricultural Technology, 10, 100828. https://doi.org/10.1016/j.atech.2025.100828
  25. Taleb, H. M., Mahrose, K. M., Abdel-Halim, A. A., & Abd El-Hack, M. E. (2024). Using artificial intelligence to improve poultry productivity – A review. Annals of Animal Science, 24(2), 395–412. https://doi.org/10.2478/aoas-2024-0039
  26. Wang, P., Wu, P., Wang, C., Huang, X., Wang, L., Li, C., Niu, Q., & Li, H. (2025). Chicken body temperature monitoring method in complex environment based on multi-source image fusion and deep learning. Computers and Electronics in Agriculture, 228, 109689. https://doi.org/10.1016/j.compag.2024.109689
  27. Wongtangtintharn, S., Chakkhambang, S., Pootthachaya, P., Cherdthong, A., & Wanapat, M. (2025). Challenges and constraints to the sustainability of poultry farming in Thailand. Animal Bioscience, 38(4), 845–862. https://www.animbiosci.org/journal/view.php?number=25408
  28. Yang, J., Zhang, T., Fang, C., & Zheng, H. (2023). A defencing algorithm based on deep learning improves the detection accuracy of caged chickens. Computers and Electronics in Agriculture, 204, 107501. https://doi.org/10.1016/j.compag.2022.107501
  29. Yep, B., & Zheng, Y. B. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290
  30. Zhou, Z., Hu, Y., Yang, X., & Yang, J. (2024). YOLO-based marine organism detection using two-terminal attention mechanism and difficult-sample resampling. Applied Soft Computing, 153, 111291. https://doi.org/10.1016/j.asoc.2024.111291
Read More

References


Ahmed, M. M., Hassanein, E. E., & Hassanein, A. E. (2024). A smart IoT-based monitoring system in poultry farms using chicken behavioural analysis. Internet of Things, 25, 101010. https://doi.org/10.1016/j.iot.2023.101010

Altarez, R. (2024). Faster R-CNN, RetinaNet and Single Shot Detector in different ResNet backbones for marine vessel detection using cross polarization C-band SAR imagery. Remote Sensing Applications: Society and Environment, 36, 101297. https://doi.org/10.1016/j.rsase.2024.101297

Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. https://doi.org/10.1016/j.compag.2020.105291

Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956. https://doi.org/10.1016/j.jclepro.2022.129956

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://arxiv.org/abs/2004.10934

Bumbálek, R., Umurungi, S. N., Ufitikirezi, J. D. D. M., Zoubek, T., Kuneš, R., Stehlík, R., Lin, H.-I., & Bartoš, P. (2025). Deep learning in poultry farming: Comparative analysis of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 for dead chickens detection. Poultry Science, 104, Article 105440. https://doi.org/10.1016/j.psj.2025.105440

Dewi, T., Mardiyati, E. N., Risma, P., & Oktarina, Y. (2025). Hybrid machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system. Energy Conversion and Management, 330, 119663. https://doi.org/10.1016/j.enconman.2024.119663

Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E. N., Br Sianipar, A., Hibrizi, D. R., Azhar, M. S., & Linarti, D. (2025). Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development, 85, 101683. https://doi.org/10.1016/j.esd.2024.101683

Fang, C., Zhang, T., Zheng, H., Huang, J., & Cuan, K. (2020). Pose estimation and behavior classification of broiler chickens based on deep neural networks. Computers and Electronics in Agriculture, 180, 105863. https://doi.org/10.1016/j.compag.2020.105863

Farrelly Mitchell. (2025). The biggest challenges facing the poultry industry. Retrieved from https://farrellymitchell.com/technology-and-innovation/challenges-facing-the-poultry-industry/

Guo, Y., Aggrey, S. E., Yang, X., Oladeinde, A., Qiao, Y., & Chai, L. (2023). Detecting broiler chickens on litter floor with the YOLOv5-CBAM deep learning model. Artificial Intelligence in Agriculture, 9, 36–45. https://doi.org/10.1016/j.aiia.2023.08.002

Hafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Frontiers in Veterinary Science, 7, 516. https://doi.org/10.3389/fvets.2020.00516

Jin, Y., Liu, J., Xu, Z., Yuan, S., Li, P., & Wang, J. (2021). Development status and trend of agricultural robot technology. International Journal of Agricultural and Biological Engineering, 14(2), 1–19. DOI: 10.25165/j.ijabe.20211404.6821

Chatraphuj, K., Meshram, K., Mishra, U., & Rathnayake, U. (2025). Application of artificial intelligence in agri-tech, environmental and biodiversity conservation. Array, 26, 100412. https://doi.org/10.1016/j.array.2025.100412

FKucukkara, Z., Ozkan, I. A., Tasdemir, S., & Ceylan, O. (2025). Classification of chicken Eimeria species through deep transfer learning models: A comparative study on model efficacy. Veterinary Parasitology, 334, 110400. https://doi.org/10.1016/j.vetpar.2025.110400

Li, J., Zhang, Y., Zhang, Y., Shi, H., Song, X., & Peng, C. (2025). MIF-YOLO: An enhanced YOLO with multi-source image fusion for autonomous dead chicken detection. Smart Agricultural Technology, 12, 101104. https://doi.org/10.1016/j.atech.2025.101104

Love, D. C., Fry, J. P., Li, X. M., Hill, E. S., Genello, L., Semmens, K., & Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023

Masykur, A., Ratriyanto, A., Widyas, N., & Prastowo, S. (2022). Application of nonlinear predictive models for egg production of quail receiving diets supplemented with silica+ or betaine in a tropical environment. European Poultry Science, 86, 1–12. https://doi.org/10.1399/eps.2022.352

Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319–326. https://doi.org/10.1016/j.compag.2016.03.003

Pallerla, C., Feng, Y., Owens, C. M., Bist, R. B., Mahmoudi, S., Sohrabipour, P., Davar, A., & Wang, D. (2024). Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogeneous property-aware chicken woody breast classification and hardness regression. Artificial Intelligence in Agriculture, 14, 73–85. https://doi.org/10.1016/j.aiia.2024.11.003

Dawkins, M. S. (2025). Smart farming and Artificial Intelligence (AI): How can we ensure that animal welfare is a priority? Applied Animal Behaviour Science, 283, 106519. https://doi.org/10.1016/j.applanim.2025.106519.

Ren, G., Lin, T., Ying, Y., Chowdhary, G., & Ting, K. C. (2020). Agricultural robotics research applicable to poultry production: A review. Computers and Electronics in Agriculture, 169, 105216. https://doi.org/10.1016/j.compag.2019.105216

Salama, N. K. G., Murray, A. G., Christie, A. J., & Wallace, I. S. (2016). Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture, 450, 283–288. https://doi.org/10.1016/j.aquaculture.2015.07.023

Shams, M. Y., Elmessery, W. M., Oraiat, A. A. T., Elbeltagi, A., Salem, A., Kumar, P., El-Messery, T. M., El-Hafeez, T. A. A., Abdelshafie, M. F., Abd El-Wahhab, G. A., El-Soaly, I. S., & Elwakeel, A. E. (2025). Automated on-site broiler live weight estimation through YOLO-based segmentation. Smart Agricultural Technology, 10, 100828. https://doi.org/10.1016/j.atech.2025.100828

Taleb, H. M., Mahrose, K. M., Abdel-Halim, A. A., & Abd El-Hack, M. E. (2024). Using artificial intelligence to improve poultry productivity – A review. Annals of Animal Science, 24(2), 395–412. https://doi.org/10.2478/aoas-2024-0039

Wang, P., Wu, P., Wang, C., Huang, X., Wang, L., Li, C., Niu, Q., & Li, H. (2025). Chicken body temperature monitoring method in complex environment based on multi-source image fusion and deep learning. Computers and Electronics in Agriculture, 228, 109689. https://doi.org/10.1016/j.compag.2024.109689

Wongtangtintharn, S., Chakkhambang, S., Pootthachaya, P., Cherdthong, A., & Wanapat, M. (2025). Challenges and constraints to the sustainability of poultry farming in Thailand. Animal Bioscience, 38(4), 845–862. https://www.animbiosci.org/journal/view.php?number=25408

Yang, J., Zhang, T., Fang, C., & Zheng, H. (2023). A defencing algorithm based on deep learning improves the detection accuracy of caged chickens. Computers and Electronics in Agriculture, 204, 107501. https://doi.org/10.1016/j.compag.2022.107501

Yep, B., & Zheng, Y. B. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/j.jclepro.2019.04.290

Zhou, Z., Hu, Y., Yang, X., & Yang, J. (2024). YOLO-based marine organism detection using two-terminal attention mechanism and difficult-sample resampling. Applied Soft Computing, 153, 111291. https://doi.org/10.1016/j.asoc.2024.111291

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Prof. Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License