Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 11, No. 1, February 2026 (Article in Progress)
  4. Articles

Issue

Vol. 11, No. 1, February 2026 (Article in Progress)

Issue Published : Jan 24, 2026
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Hybridization of PSO-SSA for Photovoltaic System MPPT Under Dynamic Irradiation and Temperature

https://doi.org/10.22219/kinetik.v11i1.2410
Muhammad Iqbal
Universitas Brawijaya
Hadi Suyono
University of Brawijaya
Wijono
Universitas Brawijaya

Corresponding Author(s) : Muhammad Iqbal

muhammadiqbal9172@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 11, No. 1, February 2026 (Article in Progress)
Article Published : Jan 24, 2026

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Maximum Power Point Tracking (MPPT) has become an important area of research to optimize the power generated by photovoltaic (PV) systems, particularly under various configurations such as series and parallel. Conventional methods including Perturb and Observe (P&O) and Incremental Conductance (InC) often fail under dynamic or partial shading conditions, while metaheuristic algorithms such as Particle Swarm Optimization (PSO) and Salp Swarm Algorithm (SSA) provide global optimization but still suffer from slow convergence and power oscillations. This study proposes a hybrid MPPT approach by combining PSO and SSA to overcome these limitations. The algorithm was implemented in MATLAB/Simulink and tested under 96 scenarios covering series and parallel configurations with irradiance and temperature variations that change both suddenly (<1 s) and gradually (>1 s). Simulation results demonstrate that the hybrid PSO–SSA consistently achieves faster convergence compared to standalone PSO or SSA, with an average convergence time of 0.286 s in series configuration (25–36% faster) and 0.282–0.284 s in parallel configuration, while achieving comparable power output to PSO. Overall, the proposed hybrid PSO–SSA algorithm provides a faster, more adaptive, and robust MPPT strategy under realistic PV operating conditions, contributing to reducing energy losses in fluctuating environments.

Keywords

Hybridization MPPT DC-DC Converter Dynamic Condition PSO SSA
Iqbal, M., Suyono, H., & Wijono. (2026). Hybridization of PSO-SSA for Photovoltaic System MPPT Under Dynamic Irradiation and Temperature. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 11(1). https://doi.org/10.22219/kinetik.v11i1.2410
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Bollipo RB, Mikkili S, Bonthagorla PK. Hybrid, Optimal, Intelligent and Classical PV MPPT Techniques: A Review. CSEE Journal of Power and Energy System. 2021; 7(1): 9-33.
  2. Lyden S, Haque ME. A Hybrid Simulated Annealing and Perturb and Observe Maximum Power Point Tracking Method. IEEE Systems Journal. 2021; 15(3): 4325-4333.
  3. National Renewable Energy Laboratory (NREL). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2024. ; 2024.
  4. Jamaludin M, Tajuddin MFN, Ahmed J, Azmi A, Azmi S, Ghazali NH, et al. An Effective Salp Swarm Based MPPT for Photovoltaic Systems Under Dynamic and Partial Shading Conditions. IEEE Access. 2021; 9: 34570-34589.
  5. Patel H, Agarwal V. Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Industrial Electronics. 2008; 55(4): 1689-1698.
  6. Kermadi M, Salam Z, Ahmed J, Berkouk EM. An Effective Hybrid Maximum Power Point Tracker of Photovoltaic Arrays for Complex Partial Shading Conditions. IEEE Transactions on Industrial Electronics. 2019; 66(9): 6990-7000.
  7. Jamaludin MNI, Tajuddin MFNb, Ahmed J, Sengodan T. Hybrid Bio-Intelligence Salp Swarm Algorithm for Maximum Power Point Tracking (MPPT) of Photovoltaic Systems Under Gradual Change in Irradiance Conditions. In 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT); 2021; Erode, India: IEEE.
  8. Wan Y, Mao M, Zhou L, Zhang Q, Xi X, Zheng C. A Novel Nature-Inspired Maximum Power Point Tracking (MPPT) Controller Based on SSA-GWO Algorithm for Partially Shaded Photovoltaic Systems. Electronics. 2019; 8: 680-697.
  9. Hasan F, Suyono H, Lomi A. Optimasi Maximum Power Point Tracking pada Array Photovoltaic Menggunakan Algoritma Ant Colony Optimization dan Particle Swarm Optimization. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems). 2022; 16(1): 1-9.
  10. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. Advances in Engineering Software. 2017;: 1-29.
  11. Xu G, Yu G. On Convergence Analysis of Particle Swarm Optimization Algorithm. Journal of Computational and Applied Mathematics. 2018; 333: 65-73.
  12. Elgweal OAA, Wijono , Hasanah RN. The Maximum Power Point Tracking Efficiency Comparison on Photovoltaic Using Fuzzy Logic and Perturb & Observe Methods. IOSR-JEEE (IOSR Journal of Electrical and Electronics Engineering). 2019; 14(3): 33-42.
  13. Kacimi N, Idir A, Grouni S, Boucherit MS. Improved MPPT Control Strategy for PV Connected to Grid Using IncCond-PSO-MPC Approach. CSEE Journal of Power and Energy Systems. 2023; 9(3): 1008-1020.
Read More

References


Bollipo RB, Mikkili S, Bonthagorla PK. Hybrid, Optimal, Intelligent and Classical PV MPPT Techniques: A Review. CSEE Journal of Power and Energy System. 2021; 7(1): 9-33.

Lyden S, Haque ME. A Hybrid Simulated Annealing and Perturb and Observe Maximum Power Point Tracking Method. IEEE Systems Journal. 2021; 15(3): 4325-4333.

National Renewable Energy Laboratory (NREL). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2024. ; 2024.

Jamaludin M, Tajuddin MFN, Ahmed J, Azmi A, Azmi S, Ghazali NH, et al. An Effective Salp Swarm Based MPPT for Photovoltaic Systems Under Dynamic and Partial Shading Conditions. IEEE Access. 2021; 9: 34570-34589.

Patel H, Agarwal V. Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Transactions on Industrial Electronics. 2008; 55(4): 1689-1698.

Kermadi M, Salam Z, Ahmed J, Berkouk EM. An Effective Hybrid Maximum Power Point Tracker of Photovoltaic Arrays for Complex Partial Shading Conditions. IEEE Transactions on Industrial Electronics. 2019; 66(9): 6990-7000.

Jamaludin MNI, Tajuddin MFNb, Ahmed J, Sengodan T. Hybrid Bio-Intelligence Salp Swarm Algorithm for Maximum Power Point Tracking (MPPT) of Photovoltaic Systems Under Gradual Change in Irradiance Conditions. In 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT); 2021; Erode, India: IEEE.

Wan Y, Mao M, Zhou L, Zhang Q, Xi X, Zheng C. A Novel Nature-Inspired Maximum Power Point Tracking (MPPT) Controller Based on SSA-GWO Algorithm for Partially Shaded Photovoltaic Systems. Electronics. 2019; 8: 680-697.

Hasan F, Suyono H, Lomi A. Optimasi Maximum Power Point Tracking pada Array Photovoltaic Menggunakan Algoritma Ant Colony Optimization dan Particle Swarm Optimization. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems). 2022; 16(1): 1-9.

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. Advances in Engineering Software. 2017;: 1-29.

Xu G, Yu G. On Convergence Analysis of Particle Swarm Optimization Algorithm. Journal of Computational and Applied Mathematics. 2018; 333: 65-73.

Elgweal OAA, Wijono , Hasanah RN. The Maximum Power Point Tracking Efficiency Comparison on Photovoltaic Using Fuzzy Logic and Perturb & Observe Methods. IOSR-JEEE (IOSR Journal of Electrical and Electronics Engineering). 2019; 14(3): 33-42.

Kacimi N, Idir A, Grouni S, Boucherit MS. Improved MPPT Control Strategy for PV Connected to Grid Using IncCond-PSO-MPC Approach. CSEE Journal of Power and Energy Systems. 2023; 9(3): 1008-1020.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Prof. Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License