Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Nov 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Development of a Web-Based Information System for Real-Time Fainting Detection Using YOLO in Smart Healthcare

https://doi.org/10.22219/kinetik.v10i4.2407
Wiwit Agus Triyanto
Universitas Muria Kudus
Nanik Susanti
Universitas Muria Kudus

Corresponding Author(s) : Wiwit Agus Triyanto

at.wiwit@umk.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Nov 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Loss of consciousness (fainting) is a critical condition that requires prompt treatment, especially in the context of elderly health services and independent patient care. This research aims to develop a web-based information system that is able to detect fainting events in real-time using the You Only Look Once (YOLO) algorithm version 11, which is one of the latest approaches in deep learning-based object detection. The system is designed to monitor video from the surveillance camera directly, make visual inferences of the patient's posture, and provide automatic notifications if a loss of consciousness condition is detected. The dataset was obtained from the Roboflow platform and consists of 9,081 annotated images representing the fainting position. The YOLOv11 model was trained and tested using training data sharing, validation, and testing methods. The test results showed that the model achieved mAP, precision, recall and F1-score values of 98.70%, 98.00%, 97.30% and 97.65%, respectively. The developed information system is able to display the detection visually through the bounding box on the dashboard and record the time of the incident. With this performance, this system shows great potential in improving patient safety through intelligent monitoring and automated response in hospital, nursing home, and residential environments. This research also opens up opportunities for the development of more adaptive AI-based health monitoring systems and computer vision in the future.

Keywords

Fainting YOLOv12 Computer Vision Smart Healtcare Web-based Information System
Triyanto, W. A., & Susanti, N. (2025). Development of a Web-Based Information System for Real-Time Fainting Detection Using YOLO in Smart Healthcare. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2407
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. R. Shinta, J. Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, 'Classification of Leaf Disease Images of Rice Plants Using CNN with VGG-19 Architecture', J. Science and Inform., vol. 9, no. 1, pp. 37–45, 2023. http://doi.org/10.22216/jsi.v9i1.2175
  2. J. Liu, J. Guo, and S. Zhang, 'YOLOv11-HRS: An Improved Model for Strawberry Ripeness Detection', Agronomy, vol. 15, no. 5, p. 1026, 2025. http://doi.org/10.3390/agronomy15051026
  3. Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, 'Object Detection and Recognition with Machine Learning Models: Yolo Model', CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, p. 192, 2021. http://doi.org/10.24114/cess.v6i2.25840
  4. K. Vijayaprabakaran, K. Sathiyamurthy, and M. Ponniamma, 'Video-Based Human Activity Recognition for Elderly Using Convolutional Neural Network', Int. J. Secur. Priv. Pervasive Comput., vol. 12, no. 1, pp. 36–48, 2020. http://doi.org/10.4018/ijsppc.2020010104
  5. T. Shaik et al., 'Remote patient monitoring using artificial intelligence: Current state, applications, and challenges', Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 13, no. 2, 2023. http://doi.org/10.1002/widm.1485
  6. S. Shen, Z. Wu, and P. Zhang, 'Research on target detection method of distracted driving behavior based on improved YOLOv8', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2407.01864
  7. J. H. Yousif, 'Fuzzy logic approach for detecting drivers' drowsiness based on image processing and video streaming', 2021. http://doi.org/10.36227/techrxiv.16777927
  8. N. Adiuku, N. P. Avdelidis, G. Tang, and A. Plastropoulos, 'Advancements in Learning-Based Navigation Systems for Robotic Applications in MRO Hangar: Review', Sensors, vol. 24, no. 5, p. 1377, 2024. http://doi.org/10.3390/s24051377
  9. R. Huang, J. Pedoeem, and C. Chen, 'YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers', 2021 IEEE Int. Conf. Big Data (Big Data)Pp. 2503–2510, 2018. http://doi.org/10.1109/bigdata.2018.8621865
  10. N. Jegham, C. Y. Koh, M. Abdelatti, and A. Hendawi, 'Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2411.00201
  11. Y.-H. Li, Y. Li, M.-Y. Wei, and G. Li, 'Innovation and challenges of artificial intelligence technology in personalized healthcare', Scientific Reports, vol. 14, no. 1. Nature Portfolio, 2024. http://doi.org/10.1038/s41598-024-70073-7
  12. A. Brankovic et al., 'Explainable machine learning for real-time deterioration alert prediction to guide pre-emptive treatment', Sci. Rep., vol. 12, no. 1, 2022. http://doi.org/10.1038/s41598-022-15877-1
  13. B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, 'Machine Learning for Medical Imaging', Radiographics, vol. 37, no. 2. Radiological Society of North America, pp. 505–515, 2017. http://doi.org/10.1148/rg.2017160130
  14. K. Kumar and K. M. B. A. Safwan, 'Accelerating Object Detection with YOLOv4 for Real-Time Applications', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2410.16320
  15. A. Rasheed and M. Zarkoosh, 'YOLOv11 Optimization for Efficient Resource Utilization', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2412.14790
  16. M. Mao and M. Hong, 'YOLO Object Detection for Real-Time Fabric Defect Inspection in the Textile Industry: A Review of YOLOv1 to YOLOv11', Sensors, vol. 25, no. 7. Multidisciplinary Digital Publishing Institute, p. 2270, 2025. http://doi.org/10.3390/s25072270
  17. T. E. Lockhart et al., 'Prediction of fall risk among community-dwelling older adults using a wearable system', Sci. Rep., vol. 11, no. 1, 2021. http://doi.org/10.1038/s41598-021-00458-5
  18. W. Gong, 'Lightweight Object Detection: A Study Based on YOLOv7 Integrated with ShuffleNetv2 and Vision Transformer', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2403.01736
  19. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, 'You only look once: Unified, real-time object detection', in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. http://dx.doi.org/10.1109/CVPR.2016.91
  20. J. Terven and D. Cordova-Esparza, 'A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS', arXiv (Cornell University). Cornell University, 2023,. http://doi.org/10.48550/arxiv.2304.00501
  21. W. A. Triyanto, K. Adi, and J. E. Suseno, 'Indoor Location Mapping of Lameness Chickens with Multi Cameras and Perspective Transform Using Convolutional Neural Networks', Math. Model. Eng. Probl., vol. 11, no. 2, pp. 539–548, 2024. http://doi.org/10.18280/mmep.110227
  22. A. T. Y. Chen, J. Fan, M. Biglari-Abhari, and K. I. K. Wang, 'A computationally efficient pipeline for camera-based indoor person tracking', Int. Conf. Image Vis. Comput. New Zeal., vol. 2017-Decem, pp. 1–6, 2018. http://doi.org/10.1109/IVCNZ.2017.8402479
  23. M. Yaseen, 'What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.15857
  24. G. A. Pereira, 'Fall Detection for Industrial Setups Using YOLOv8 Variants', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.04605
  25. A. S. Geetha, 'Comparing YOLOv5 Variants for Vehicle Detection: A Performance Analysis', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.12550
Read More

References


R. Shinta, J. Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, 'Classification of Leaf Disease Images of Rice Plants Using CNN with VGG-19 Architecture', J. Science and Inform., vol. 9, no. 1, pp. 37–45, 2023. http://doi.org/10.22216/jsi.v9i1.2175

J. Liu, J. Guo, and S. Zhang, 'YOLOv11-HRS: An Improved Model for Strawberry Ripeness Detection', Agronomy, vol. 15, no. 5, p. 1026, 2025. http://doi.org/10.3390/agronomy15051026

Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, 'Object Detection and Recognition with Machine Learning Models: Yolo Model', CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, p. 192, 2021. http://doi.org/10.24114/cess.v6i2.25840

K. Vijayaprabakaran, K. Sathiyamurthy, and M. Ponniamma, 'Video-Based Human Activity Recognition for Elderly Using Convolutional Neural Network', Int. J. Secur. Priv. Pervasive Comput., vol. 12, no. 1, pp. 36–48, 2020. http://doi.org/10.4018/ijsppc.2020010104

T. Shaik et al., 'Remote patient monitoring using artificial intelligence: Current state, applications, and challenges', Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 13, no. 2, 2023. http://doi.org/10.1002/widm.1485

S. Shen, Z. Wu, and P. Zhang, 'Research on target detection method of distracted driving behavior based on improved YOLOv8', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2407.01864

J. H. Yousif, 'Fuzzy logic approach for detecting drivers' drowsiness based on image processing and video streaming', 2021. http://doi.org/10.36227/techrxiv.16777927

N. Adiuku, N. P. Avdelidis, G. Tang, and A. Plastropoulos, 'Advancements in Learning-Based Navigation Systems for Robotic Applications in MRO Hangar: Review', Sensors, vol. 24, no. 5, p. 1377, 2024. http://doi.org/10.3390/s24051377

R. Huang, J. Pedoeem, and C. Chen, 'YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers', 2021 IEEE Int. Conf. Big Data (Big Data)Pp. 2503–2510, 2018. http://doi.org/10.1109/bigdata.2018.8621865

N. Jegham, C. Y. Koh, M. Abdelatti, and A. Hendawi, 'Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2411.00201

Y.-H. Li, Y. Li, M.-Y. Wei, and G. Li, 'Innovation and challenges of artificial intelligence technology in personalized healthcare', Scientific Reports, vol. 14, no. 1. Nature Portfolio, 2024. http://doi.org/10.1038/s41598-024-70073-7

A. Brankovic et al., 'Explainable machine learning for real-time deterioration alert prediction to guide pre-emptive treatment', Sci. Rep., vol. 12, no. 1, 2022. http://doi.org/10.1038/s41598-022-15877-1

B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, 'Machine Learning for Medical Imaging', Radiographics, vol. 37, no. 2. Radiological Society of North America, pp. 505–515, 2017. http://doi.org/10.1148/rg.2017160130

K. Kumar and K. M. B. A. Safwan, 'Accelerating Object Detection with YOLOv4 for Real-Time Applications', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2410.16320

A. Rasheed and M. Zarkoosh, 'YOLOv11 Optimization for Efficient Resource Utilization', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2412.14790

M. Mao and M. Hong, 'YOLO Object Detection for Real-Time Fabric Defect Inspection in the Textile Industry: A Review of YOLOv1 to YOLOv11', Sensors, vol. 25, no. 7. Multidisciplinary Digital Publishing Institute, p. 2270, 2025. http://doi.org/10.3390/s25072270

T. E. Lockhart et al., 'Prediction of fall risk among community-dwelling older adults using a wearable system', Sci. Rep., vol. 11, no. 1, 2021. http://doi.org/10.1038/s41598-021-00458-5

W. Gong, 'Lightweight Object Detection: A Study Based on YOLOv7 Integrated with ShuffleNetv2 and Vision Transformer', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2403.01736

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, 'You only look once: Unified, real-time object detection', in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. http://dx.doi.org/10.1109/CVPR.2016.91

J. Terven and D. Cordova-Esparza, 'A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS', arXiv (Cornell University). Cornell University, 2023,. http://doi.org/10.48550/arxiv.2304.00501

W. A. Triyanto, K. Adi, and J. E. Suseno, 'Indoor Location Mapping of Lameness Chickens with Multi Cameras and Perspective Transform Using Convolutional Neural Networks', Math. Model. Eng. Probl., vol. 11, no. 2, pp. 539–548, 2024. http://doi.org/10.18280/mmep.110227

A. T. Y. Chen, J. Fan, M. Biglari-Abhari, and K. I. K. Wang, 'A computationally efficient pipeline for camera-based indoor person tracking', Int. Conf. Image Vis. Comput. New Zeal., vol. 2017-Decem, pp. 1–6, 2018. http://doi.org/10.1109/IVCNZ.2017.8402479

M. Yaseen, 'What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.15857

G. A. Pereira, 'Fall Detection for Industrial Setups Using YOLOv8 Variants', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.04605

A. S. Geetha, 'Comparing YOLOv5 Variants for Vehicle Detection: A Performance Analysis', arXiv (Cornell Univ., 2024. http://doi.org/10.48550/arxiv.2408.12550

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License