Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 11, No. 1, February 2026 (Article in Progress)
  4. Articles

Issue

Vol. 11, No. 1, February 2026 (Article in Progress)

Issue Published : Jan 24, 2026
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Adaptive EKF-Based Ship Trajectory Estimation with Earth Curvature Modeling and Dynamic Noise Tuning

https://doi.org/10.22219/kinetik.v11i1.2397
Berliana Elfada
Politeknik Negeri Bandung
Suci Awalia Gardara
Politeknik Negeri Bandung
Eddy Bambang Soewono
Politeknik Negeri Bandung
Yudi Widhiyasana
Politeknik Negeri Bandung

Corresponding Author(s) : Eddy Bambang Soewono

ebang@polban.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 11, No. 1, February 2026 (Article in Progress)
Article Published : Jan 24, 2026

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Accurate position estimation is critical for the effectiveness of automatic weapon and navigation systems. Standard Extended Kalman Filter (EKF) models typically adopt flat-Earth assumptions and static noise covariances, which limit their accuracy in operational environments. This study proposes an optimized EKF framework that integrates two complementary approaches. First, ship trajectories are represented in Earth-Centered Earth-Fixed (ECEF) coordinates with a WGS-84 reference to account for Earth’s curvature. Second, process (Q) and measurement (R) covariances are adaptively determined using Joint Likelihood Maximization (JLM) with logarithmic scale exploration, allowing the filter to automatically identify the most accurate configuration. Each Q/R setting is evaluated within the EKF framework using root mean square error (RMSE) derived from radar data logs. The method was tested under short-history scenarios (5 and 10 data points) within an operational range of ±15 km, reflecting conditions commonly encountered in Combat Management Systems (CMS). Results show that while coordinate transformation alone provides only marginal improvements at short ranges, the combination of curvature modelling and adaptive Q/R tuning significantly reduces RMSE, achieving average errors approaching zero with high repeatability as measured by standard deviation. This research demonstrates a novel integration of geometric and statistical optimization in EKF design and highlights its applicability to ship trajectory estimation and defence systems.

Keywords

Earth’s Curvature Position Prediction Extended Kalman Filter (EKF) Covariance Process and Measurement
Elfada, B. ., Gardara, S. A. ., Soewono, E. B., & Widhiyasana, Y. (2026). Adaptive EKF-Based Ship Trajectory Estimation with Earth Curvature Modeling and Dynamic Noise Tuning. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 11(1). https://doi.org/10.22219/kinetik.v11i1.2397
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Q. A. M. Thi, C. Lee, T. M. Tao, and C. H. Youn, “Tracking Vessel Activities with AIS Data using an Adaptive Extended Kalman Filter,” Int. Conf. ICT Converg., pp. 349–354, 2024, doi: 10.1109/ICTC62082.2024.10827762.
  2. C. Yang, Z. Gao, X. Huang, and T. Kan, “Hybrid extended-cubature Kalman filters for non-linear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative,” IET Control Theory Appl., vol. 14, no. 11, pp. 1424–1437, 2020, doi: 10.1049/iet-cta.2019.1121.
  3. A. P. A. Mohinder S Grewal, Kalman Filtering -- theory and practicing using matlab -- edisi 3. 2008.
  4. A. Wondosen, Y. Debele, S. K. Kim, H. Y. Shi, B. Endale, and B. S. Kang, “Bayesian Optimization for Fine-Tuning EKF Parameters in UAV Attitude and Heading Reference System Estimation,” Aerospace, vol. 10, no. 12, 2023, doi: 10.3390/aerospace10121023.
  5. B. Or and I. Klein, “A Hybrid Model and Learning-Based Adaptive Navigation Filter,” IEEE Trans. Instrum. Meas., vol. 71, no. Dvl, pp. 1–11, 2022, doi: 10.1109/TIM.2022.3197775.
  6. B. Cole and G. Schamberg, “Unscented Kalman filter for long-distance vessel tracking in geodetic coordinates,” Appl. Ocean Res., vol. 124, 2022, doi: 10.1016/j.apor.2022.103205.
  7. B. Boulkroune, K. Geebelen, J. Wan, and E. van Nunen, “Auto-tuning extended Kalman filters to improve state estimation,” IEEE Intell. Veh. Symp., 2023.
  8. M. Sato and M. Toda, “Adaptive Algorithms of Tuning and Switching Kalman and H∞ Filters and Their Application to Estimation of Ship Oscillation with Time-Varying Frequencies,” IEEE Trans. Ind. Electron., 2019.
  9. S. Zollo and B. Ristic, “On polar and versus Cartesian coordinates for target tracking,” ISSPA 1999 - Proc. 5th Int. Symp. Signal Process. Its Appl., vol. 2, no. February 1999, pp. 499–502, 1999, doi: 10.1109/ISSPA.1999.815719.
  10. A. Budiyono, “Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems,” Ind. Robot An Int. J., vol. 39, no. 3, 2013, doi: 10.1108/ir.2012.04939caa.011.
  11. K. N. Baasch, L. Icking, F. Ruwisch, and S. Schön, “Coordinate Frames and Transformations in GNSS Ray-Tracing for Autonomous Driving in Urban Areas,” Remote Sens., vol. 15, no. 1, 2023, doi: 10.3390/rs15010180.
  12. A. Li and Z. Qiang, “Multi-sensor data fusion method based on adaptive Kalman filtering,” 2024, pp. 306–311. doi: https://doi.org/10.1145/3638782.3638829.
  13. Y. Chen, W. Li;, and Y. Wang, “Online Adaptive Kalman Filter for Target Tracking With Unknown Noise Statistics,” vol. 5, no. 3, 2021, doi: 10.1109/LSENS.2021.3058119.
  14. A. Y. N. and S. T. Pieter Abbeel, Adam Coates, Michael Montemerlo, “Discriminative Training of Kalman Filters,” J. Neurochem., vol. 52, no. 5, pp. 1401–1406, 2005, doi: 10.1111/j.1471-4159.1989.tb09186.x.
  15. Q. Dong;, N. Wang;, C. Zou;, and L. H. K. Qu, “An Adaptive Order Variation Mathematical Modeling of Ship Maneuvering Motion Under Environmental Changes,” 2024. doi: 10.1109/OCEANS51537.2024.10682352.
  16. L. Tian;, W. Xue;, and L. Cheng, “Hand Position Tracking based on Optimized Consistent Extended Kalman Filter,” 2022. doi: 10.1109/CCDC55256.2022.10033812.
  17. H. S. Darling, “Do you have a standard way of interpreting the standard deviation? A narrative review,” Cancer Res. Stat. Treat., vol. 5, no. 4, pp. 728–733, 2022, doi: 10.4103/crst.crst_284_22.
  18. S. Hu and B. Yan, “Ship Tracking with Static Electric Field Based on Adaptive Progressive Update Extended Kalman Filter,” MATEC Web Conf., vol. 232, pp. 1–4, 2018, doi: 10.1051/matecconf/201823204063.
  19. F. Deng, H.-L. Yang, and L.-J. Wang, “Adaptive Unscented Kalman Filter Based Estimation and Filtering for Dynamic Positioning with Model Uncertainties,” Int. J. Control. Autom. Syst., vol. 117, pp. 667–687, 2019, doi: https://doi.org/10.1007/s12555-018-9503-4.
  20. C. Jia;, J. Ma;, and W. M. Kouw, “Multiple Variational Kalman-GRU for Ship Trajectory Prediction With Uncertainty,” vol. 61, no. 2, 2025, doi: 10.1109/TAES.2024.3491053.
  21. W. Lv;, L. Wang;, and S. Jiang, “A Trajectory Simulation Model of the Short-Range Anti-ship Missile Based on Considering Curvature of the Earth,” 2010. doi: 10.1109/ICCMS.2010.444.
  22. D. J. McLaughlin, “Gap free CONUS surveillance using dense networks of short range radars,” 2010. doi: 10.1109/ARRAY.2010.5613393.
  23. Tao Zou; Weixiang Zeng; Wenlin Yang; Muk Chen Ong; Yunting Wang; Weilun Situ, “An Adaptive Robust Cubature Kalman Filter Based on Sage-Husa Estimator for Improving Ship Heave Measurement Accuracy,” 2023.
  24. B. Ge, H. Zhang, L. Jiang, Z. Li, and M. M. Butt, “Adaptive unscented kalman filter for target tracking with unknown time-varying noise covariance,” Sensors (Switzerland), vol. 19, no. 6, 2019, doi: 10.3390/s19061371.
  25. G. Yu;, C. Li;, and B. Lu, “Processing 3D Flight Trajectory Data with Adaptive Kalman Filtering,” 2024. doi: 10.1109/ICCASIT62299.2024.10828030.
Read More

References


Q. A. M. Thi, C. Lee, T. M. Tao, and C. H. Youn, “Tracking Vessel Activities with AIS Data using an Adaptive Extended Kalman Filter,” Int. Conf. ICT Converg., pp. 349–354, 2024, doi: 10.1109/ICTC62082.2024.10827762.

C. Yang, Z. Gao, X. Huang, and T. Kan, “Hybrid extended-cubature Kalman filters for non-linear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative,” IET Control Theory Appl., vol. 14, no. 11, pp. 1424–1437, 2020, doi: 10.1049/iet-cta.2019.1121.

A. P. A. Mohinder S Grewal, Kalman Filtering -- theory and practicing using matlab -- edisi 3. 2008.

A. Wondosen, Y. Debele, S. K. Kim, H. Y. Shi, B. Endale, and B. S. Kang, “Bayesian Optimization for Fine-Tuning EKF Parameters in UAV Attitude and Heading Reference System Estimation,” Aerospace, vol. 10, no. 12, 2023, doi: 10.3390/aerospace10121023.

B. Or and I. Klein, “A Hybrid Model and Learning-Based Adaptive Navigation Filter,” IEEE Trans. Instrum. Meas., vol. 71, no. Dvl, pp. 1–11, 2022, doi: 10.1109/TIM.2022.3197775.

B. Cole and G. Schamberg, “Unscented Kalman filter for long-distance vessel tracking in geodetic coordinates,” Appl. Ocean Res., vol. 124, 2022, doi: 10.1016/j.apor.2022.103205.

B. Boulkroune, K. Geebelen, J. Wan, and E. van Nunen, “Auto-tuning extended Kalman filters to improve state estimation,” IEEE Intell. Veh. Symp., 2023.

M. Sato and M. Toda, “Adaptive Algorithms of Tuning and Switching Kalman and H∞ Filters and Their Application to Estimation of Ship Oscillation with Time-Varying Frequencies,” IEEE Trans. Ind. Electron., 2019.

S. Zollo and B. Ristic, “On polar and versus Cartesian coordinates for target tracking,” ISSPA 1999 - Proc. 5th Int. Symp. Signal Process. Its Appl., vol. 2, no. February 1999, pp. 499–502, 1999, doi: 10.1109/ISSPA.1999.815719.

A. Budiyono, “Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems,” Ind. Robot An Int. J., vol. 39, no. 3, 2013, doi: 10.1108/ir.2012.04939caa.011.

K. N. Baasch, L. Icking, F. Ruwisch, and S. Schön, “Coordinate Frames and Transformations in GNSS Ray-Tracing for Autonomous Driving in Urban Areas,” Remote Sens., vol. 15, no. 1, 2023, doi: 10.3390/rs15010180.

A. Li and Z. Qiang, “Multi-sensor data fusion method based on adaptive Kalman filtering,” 2024, pp. 306–311. doi: https://doi.org/10.1145/3638782.3638829.

Y. Chen, W. Li;, and Y. Wang, “Online Adaptive Kalman Filter for Target Tracking With Unknown Noise Statistics,” vol. 5, no. 3, 2021, doi: 10.1109/LSENS.2021.3058119.

A. Y. N. and S. T. Pieter Abbeel, Adam Coates, Michael Montemerlo, “Discriminative Training of Kalman Filters,” J. Neurochem., vol. 52, no. 5, pp. 1401–1406, 2005, doi: 10.1111/j.1471-4159.1989.tb09186.x.

Q. Dong;, N. Wang;, C. Zou;, and L. H. K. Qu, “An Adaptive Order Variation Mathematical Modeling of Ship Maneuvering Motion Under Environmental Changes,” 2024. doi: 10.1109/OCEANS51537.2024.10682352.

L. Tian;, W. Xue;, and L. Cheng, “Hand Position Tracking based on Optimized Consistent Extended Kalman Filter,” 2022. doi: 10.1109/CCDC55256.2022.10033812.

H. S. Darling, “Do you have a standard way of interpreting the standard deviation? A narrative review,” Cancer Res. Stat. Treat., vol. 5, no. 4, pp. 728–733, 2022, doi: 10.4103/crst.crst_284_22.

S. Hu and B. Yan, “Ship Tracking with Static Electric Field Based on Adaptive Progressive Update Extended Kalman Filter,” MATEC Web Conf., vol. 232, pp. 1–4, 2018, doi: 10.1051/matecconf/201823204063.

F. Deng, H.-L. Yang, and L.-J. Wang, “Adaptive Unscented Kalman Filter Based Estimation and Filtering for Dynamic Positioning with Model Uncertainties,” Int. J. Control. Autom. Syst., vol. 117, pp. 667–687, 2019, doi: https://doi.org/10.1007/s12555-018-9503-4.

C. Jia;, J. Ma;, and W. M. Kouw, “Multiple Variational Kalman-GRU for Ship Trajectory Prediction With Uncertainty,” vol. 61, no. 2, 2025, doi: 10.1109/TAES.2024.3491053.

W. Lv;, L. Wang;, and S. Jiang, “A Trajectory Simulation Model of the Short-Range Anti-ship Missile Based on Considering Curvature of the Earth,” 2010. doi: 10.1109/ICCMS.2010.444.

D. J. McLaughlin, “Gap free CONUS surveillance using dense networks of short range radars,” 2010. doi: 10.1109/ARRAY.2010.5613393.

Tao Zou; Weixiang Zeng; Wenlin Yang; Muk Chen Ong; Yunting Wang; Weilun Situ, “An Adaptive Robust Cubature Kalman Filter Based on Sage-Husa Estimator for Improving Ship Heave Measurement Accuracy,” 2023.

B. Ge, H. Zhang, L. Jiang, Z. Li, and M. M. Butt, “Adaptive unscented kalman filter for target tracking with unknown time-varying noise covariance,” Sensors (Switzerland), vol. 19, no. 6, 2019, doi: 10.3390/s19061371.

G. Yu;, C. Li;, and B. Lu, “Processing 3D Flight Trajectory Data with Adaptive Kalman Filtering,” 2024. doi: 10.1109/ICCASIT62299.2024.10828030.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Prof. Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License