Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Oct 16, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

A Metaheuristic wrapper approach to feature selection with genetic algorithm for enhancing XGBoost classification in diabetes prediction

https://doi.org/10.22219/kinetik.v10i4.2366
Nur Alamsyah
Universitas Informatika Dan Bisnis Indonesia (UNIBI) Bandung
Budiman
Universitas Informatika dan Bisnis Indonesia (UNIBI) Bandung
Venia Restreva Danestiara
Universitas Informatika dan Bisnis Indonesia (UNIBI) Bandung
Titan Parama Yoga
Universitas Informatika dan Bisnis Indonesia (UNIBI) Bandung
Reni Nursyanti
Universitas Informatika dan Bisnis Indonesia (UNIBI) Bandung
Valencia Kaunang
Universitas Informatika dan Bisnis Indonesia (UNIBI) Bandung

Corresponding Author(s) : Nur Alamsyah

nuralamsyah@unibi.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Oct 16, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This study addressed the problem of selecting the most relevant features for improving the accuracy of diabetes classification using health indicator data. The research focused on a binary classification task based on the Behavioral Risk Factor Surveillance System dataset, which comprised over seventy thousand records and twenty-one predictive features related to individual health behaviors and conditions. A metaheuristic wrapper approach was developed by integrating a Genetic Algorithm for feature selection with an XGBoost classifier to evaluate the predictive quality of each feature subset. The fitness function was defined as the average classification accuracy obtained through cross-validation. In addition to feature selection, hyperparameter optimization of the XGBoost model was carried out using a Bayesian-based search strategy to further enhance performance. The proposed method successfully identified a subset of fourteen optimal features that contributed most significantly to the prediction of diabetes. The final model, combining the selected features and optimized parameters, achieved an accuracy of 0.753, outperforming baseline models trained with all features and models using features selected by deterministic methods. These results confirmed the effectiveness of combining evolutionary feature selection with model tuning to build efficient and interpretable predictive models for medical data classification. This approach demonstrated a practical solution for managing high-dimensional data in the context of chronic disease prediction.  

Keywords

Diabetes Prediction Feature Selection Genetic Algorithm Wrapper Method
Alamsyah, N., Budiman, Danestiara, V. R., Yoga, T. P. ., Nursyanti, R., & Kaunang, V. (2025). A Metaheuristic wrapper approach to feature selection with genetic algorithm for enhancing XGBoost classification in diabetes prediction . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2366
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. G. Rajarajeshwari and G. C. Selvi, “Application of artificial intelligence for classification, segmentation, early detection, early diagnosis, and grading of diabetic retinopathy from fundus retinal images: A comprehensive review,” IEEE Access, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3494840.
  2. Z. Amiri, “Leveraging AI-Enabled Information Systems for Healthcare Management,” J. Comput. Inf. Syst., pp. 1–28, 2024, doi: https://doi.org/10.1080/08874417.2024.2414216.
  3. R. Legenstein and W. Maass, “Edge of chaos and prediction of computational performance for neural circuit models,” Neural Netw., vol. 20, no. 3, pp. 323–334, 2007, doi: https://doi.org/10.1016/j.neunet.2007.04.017.
  4. N. Alamsyah, A. P. Kurniati, and others, “Event Detection Optimization Through Stacking Ensemble and BERT Fine-tuning For Dynamic Pricing of Airline Tickets,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3466270.
  5. R. Hasan et al., “Enhancing malware detection with feature selection and scaling techniques using machine learning models,” Sci. Rep., vol. 15, no. 1, p. 9122, 2025, doi: https://doi.org/10.1038/s41598-025-93447-x.
  6. J. Hamidzadeh, Z. Mehravaran, and A. Harati, “Feature selection by utilizing kernel-based fuzzy rough set and entropy-based non-dominated sorting genetic algorithm in multi-label data,” Knowl. Inf. Syst., pp. 1–31, 2025, doi: https://doi.org/10.1007/s10115-025-02341-5.
  7. O. Bulut, B. Tan, E. Mazzullo, and A. Syed, “Benchmarking Variants of Recursive Feature Elimination: Insights from Predictive Tasks in Education and Healthcare,” Information, vol. 16, no. 6, p. 476, 2025, doi: https://doi.org/10.3390/info16060476.
  8. N. Alamsyah, T. P. Yoga, B. Budiman, and others, “IMPROVING TRAFFIC DENSITY PREDICTION USING LSTM WITH PARAMETRIC ReLU (PReLU) ACTIVATION,” JITK J. Ilmu Pengetah. Dan Teknol. Komput., vol. 9, no. 2, pp. 154–160, 2024, doi: https://doi.org/10.33480/jitk.v9i2.5046.
  9. M. Nazari and H. Saadatfar, “Enhanced instance selection for large-scale data using integrated clustering and autoencoder techniques,” Int. J. Data Sci. Anal., pp. 1–18, 2025, doi: https://doi.org/10.1007/s41060-025-00794-z.
  10. A. B. Ghorbal, A. Grine, I. Elbatal, E. M. Almetwally, M. M. Eid, and E.-S. M. El-Kenawy, “Predicting carbon dioxide emissions using deep learning and Ninja metaheuristic optimization algorithm,” Sci. Rep., vol. 15, no. 1, p. 4021, 2025, doi: https://doi.org/10.1038/s41598-025-86251-0.
  11. A. G. Putrada, N. Alamsyah, I. D. Oktaviani, and M. N. Fauzan, “LSTM For Web Visit Forecasting with Genetic Algorithm and Predictive Bandwidth Allocation,” in 2024 International Conference on Information Technology Research and Innovation (ICITRI), IEEE, 2024, pp. 53–58. doi: 10.1109/ICITRI62858.2024.10698840.
  12. A. Zeinalpour and C. P. McElroy, “Comparative Analysis of Feature Selection Methods in Clustering-Based Detection Methods,” Electronics, vol. 14, no. 11, p. 2119, 2025, doi: https://doi.org/10.3390/electronics14112119.
  13. C. Zhu, Z. Wang, Y. Peng, and W. Xiao, “An improved Red-billed blue magpie feature selection algorithm for medical data processing,” PLoS One, vol. 20, no. 5, p. e0324866, 2025, doi: https://doi.org/10.1371/journal.pone.0324866.
  14. A. Roy, P. Saha, N. Gautam, F. Schwenker, and R. Sarkar, “Adaptive genetic algorithm based deep feature selector for cancer detection in lung histopathological images,” Sci. Rep., vol. 15, no. 1, p. 4803, 2025, doi: https://doi.org/10.1038/s41598-025-86362-8.
  15. N. M. Shahani, X. Zheng, X. Wei, and Y. Wei, “Predicting Elastic Modulus of Rocks Using Metaheuristic-Optimized Ensemble Regression Models,” Rock Mech. Rock Eng., pp. 1–17, 2025, doi: https://doi.org/10.1007/s00603-025-04499-4.
  16. A. Jha, A. Bhatia, and K. Tiwari, “Bayesian Deep Learning Meets Self-Attention: A Risk-Aware Approach to Advertisement Optimization,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3570537.
  17. K. G. Reddy and D. Mishra, “Advances in Feature Selection Using Memetic Algorithms: A Comprehensive Review,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 15, no. 2, p. e70026, 2025, doi: https://doi.org/10.1002/widm.70026.
  18. N. Alamsyah, A. P. Kurniati, and others, “A novel airfare dataset to predict travel agent profits based on dynamic pricing,” in 2023 11th International Conference on Information and Communication Technology (ICoICT), IEEE, 2023, pp. 575–581. doi: 10.1109/ICoICT58202.2023.10262694.
  19. E. Hikmawati and N. Alamsyah, “Supervised Learning for Emotional Prediction and Feature Importance Analysis Using SHAP on Social Media User Data.,” Ingénierie Systèmes Inf., vol. 29, no. 6, 2024, doi: 10.18280/isi.290622.
  20. H. A. Al-Mamun, M. F. Danilevicz, J. I. Marsh, C. Gondro, and D. Edwards, “Exploring genomic feature selection: A comparative analysis of GWAS and machine learning algorithms in a large-scale soybean dataset,” Plant Genome, vol. 18, no. 1, p. e20503, 2025, doi: https://doi.org/10.1002/tpg2.20503.
  21. K. Yan, C.-F. Lam, S. Fong, J. A. L. Marques, R. C. Millham, and S. Mohammed, “A Novel Improvement of Feature Selection for Dynamic Hand Gesture Identification Based on Double Machine Learning,” Sensors, vol. 25, no. 4, p. 1126, 2025, doi: https://doi.org/10.3390/s25041126.
  22. N. Alamsyah, V. Restreva Danestiara, B. Budiman, R. Nursyanti, E. Setiana, and A. Hendra, “OPTIMIZED FACEBOOK PROPHET FOR MPOX FORECASTING: ENHANCING PREDICTIVE ACCURACY WITH HYPERPARAMETER TUNING,” J. Techno Nusa Mandiri, vol. 22, no. 1, pp. 90–98, Mar. 2025, doi: 10.33480/techno.v22i1.6507.
  23. M. Q. Ibrahim, N. K. Hussein, D. Guinovart, and M. Qaraad, “Optimizing Convolutional Neural Networks: A Comprehensive Review of Hyperparameter Tuning Through Metaheuristic Algorithms,” Arch. Comput. Methods Eng., pp. 1–38, 2025, doi: https://doi.org/10.1007/s11831-025-10292-x.
  24. R. Narayanan and N. Ganesh, “A Comprehensive Review of Metaheuristics for Hyperparameter Optimization in Machine Learning,” Metaheuristics Mach. Learn. Algorithms Appl., pp. 37–72, 2024, doi: https://doi.org/10.1002/9781394233953.ch2.
  25. D. O. Hassan and B. A. Hassan, “A comprehensive systematic review of machine learning in the retail industry: classifications, limitations, opportunities, and challenges,” Neural Comput. Appl., vol. 37, no. 4, pp. 2035–2070, 2025, doi: https://doi.org/10.1007/s00521-024-10869-w.
  26. M. Y. Shams, Z. Tarek, and A. M. Elshewey, “A novel RFE-GRU model for diabetes classification using PIMA Indian dataset,” Sci. Rep., vol. 15, no. 1, p. 982, 2025, doi: https://doi.org/10.1038/s41598-024-82420-9.
Read More

References


G. Rajarajeshwari and G. C. Selvi, “Application of artificial intelligence for classification, segmentation, early detection, early diagnosis, and grading of diabetic retinopathy from fundus retinal images: A comprehensive review,” IEEE Access, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3494840.

Z. Amiri, “Leveraging AI-Enabled Information Systems for Healthcare Management,” J. Comput. Inf. Syst., pp. 1–28, 2024, doi: https://doi.org/10.1080/08874417.2024.2414216.

R. Legenstein and W. Maass, “Edge of chaos and prediction of computational performance for neural circuit models,” Neural Netw., vol. 20, no. 3, pp. 323–334, 2007, doi: https://doi.org/10.1016/j.neunet.2007.04.017.

N. Alamsyah, A. P. Kurniati, and others, “Event Detection Optimization Through Stacking Ensemble and BERT Fine-tuning For Dynamic Pricing of Airline Tickets,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3466270.

R. Hasan et al., “Enhancing malware detection with feature selection and scaling techniques using machine learning models,” Sci. Rep., vol. 15, no. 1, p. 9122, 2025, doi: https://doi.org/10.1038/s41598-025-93447-x.

J. Hamidzadeh, Z. Mehravaran, and A. Harati, “Feature selection by utilizing kernel-based fuzzy rough set and entropy-based non-dominated sorting genetic algorithm in multi-label data,” Knowl. Inf. Syst., pp. 1–31, 2025, doi: https://doi.org/10.1007/s10115-025-02341-5.

O. Bulut, B. Tan, E. Mazzullo, and A. Syed, “Benchmarking Variants of Recursive Feature Elimination: Insights from Predictive Tasks in Education and Healthcare,” Information, vol. 16, no. 6, p. 476, 2025, doi: https://doi.org/10.3390/info16060476.

N. Alamsyah, T. P. Yoga, B. Budiman, and others, “IMPROVING TRAFFIC DENSITY PREDICTION USING LSTM WITH PARAMETRIC ReLU (PReLU) ACTIVATION,” JITK J. Ilmu Pengetah. Dan Teknol. Komput., vol. 9, no. 2, pp. 154–160, 2024, doi: https://doi.org/10.33480/jitk.v9i2.5046.

M. Nazari and H. Saadatfar, “Enhanced instance selection for large-scale data using integrated clustering and autoencoder techniques,” Int. J. Data Sci. Anal., pp. 1–18, 2025, doi: https://doi.org/10.1007/s41060-025-00794-z.

A. B. Ghorbal, A. Grine, I. Elbatal, E. M. Almetwally, M. M. Eid, and E.-S. M. El-Kenawy, “Predicting carbon dioxide emissions using deep learning and Ninja metaheuristic optimization algorithm,” Sci. Rep., vol. 15, no. 1, p. 4021, 2025, doi: https://doi.org/10.1038/s41598-025-86251-0.

A. G. Putrada, N. Alamsyah, I. D. Oktaviani, and M. N. Fauzan, “LSTM For Web Visit Forecasting with Genetic Algorithm and Predictive Bandwidth Allocation,” in 2024 International Conference on Information Technology Research and Innovation (ICITRI), IEEE, 2024, pp. 53–58. doi: 10.1109/ICITRI62858.2024.10698840.

A. Zeinalpour and C. P. McElroy, “Comparative Analysis of Feature Selection Methods in Clustering-Based Detection Methods,” Electronics, vol. 14, no. 11, p. 2119, 2025, doi: https://doi.org/10.3390/electronics14112119.

C. Zhu, Z. Wang, Y. Peng, and W. Xiao, “An improved Red-billed blue magpie feature selection algorithm for medical data processing,” PLoS One, vol. 20, no. 5, p. e0324866, 2025, doi: https://doi.org/10.1371/journal.pone.0324866.

A. Roy, P. Saha, N. Gautam, F. Schwenker, and R. Sarkar, “Adaptive genetic algorithm based deep feature selector for cancer detection in lung histopathological images,” Sci. Rep., vol. 15, no. 1, p. 4803, 2025, doi: https://doi.org/10.1038/s41598-025-86362-8.

N. M. Shahani, X. Zheng, X. Wei, and Y. Wei, “Predicting Elastic Modulus of Rocks Using Metaheuristic-Optimized Ensemble Regression Models,” Rock Mech. Rock Eng., pp. 1–17, 2025, doi: https://doi.org/10.1007/s00603-025-04499-4.

A. Jha, A. Bhatia, and K. Tiwari, “Bayesian Deep Learning Meets Self-Attention: A Risk-Aware Approach to Advertisement Optimization,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3570537.

K. G. Reddy and D. Mishra, “Advances in Feature Selection Using Memetic Algorithms: A Comprehensive Review,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 15, no. 2, p. e70026, 2025, doi: https://doi.org/10.1002/widm.70026.

N. Alamsyah, A. P. Kurniati, and others, “A novel airfare dataset to predict travel agent profits based on dynamic pricing,” in 2023 11th International Conference on Information and Communication Technology (ICoICT), IEEE, 2023, pp. 575–581. doi: 10.1109/ICoICT58202.2023.10262694.

E. Hikmawati and N. Alamsyah, “Supervised Learning for Emotional Prediction and Feature Importance Analysis Using SHAP on Social Media User Data.,” Ingénierie Systèmes Inf., vol. 29, no. 6, 2024, doi: 10.18280/isi.290622.

H. A. Al-Mamun, M. F. Danilevicz, J. I. Marsh, C. Gondro, and D. Edwards, “Exploring genomic feature selection: A comparative analysis of GWAS and machine learning algorithms in a large-scale soybean dataset,” Plant Genome, vol. 18, no. 1, p. e20503, 2025, doi: https://doi.org/10.1002/tpg2.20503.

K. Yan, C.-F. Lam, S. Fong, J. A. L. Marques, R. C. Millham, and S. Mohammed, “A Novel Improvement of Feature Selection for Dynamic Hand Gesture Identification Based on Double Machine Learning,” Sensors, vol. 25, no. 4, p. 1126, 2025, doi: https://doi.org/10.3390/s25041126.

N. Alamsyah, V. Restreva Danestiara, B. Budiman, R. Nursyanti, E. Setiana, and A. Hendra, “OPTIMIZED FACEBOOK PROPHET FOR MPOX FORECASTING: ENHANCING PREDICTIVE ACCURACY WITH HYPERPARAMETER TUNING,” J. Techno Nusa Mandiri, vol. 22, no. 1, pp. 90–98, Mar. 2025, doi: 10.33480/techno.v22i1.6507.

M. Q. Ibrahim, N. K. Hussein, D. Guinovart, and M. Qaraad, “Optimizing Convolutional Neural Networks: A Comprehensive Review of Hyperparameter Tuning Through Metaheuristic Algorithms,” Arch. Comput. Methods Eng., pp. 1–38, 2025, doi: https://doi.org/10.1007/s11831-025-10292-x.

R. Narayanan and N. Ganesh, “A Comprehensive Review of Metaheuristics for Hyperparameter Optimization in Machine Learning,” Metaheuristics Mach. Learn. Algorithms Appl., pp. 37–72, 2024, doi: https://doi.org/10.1002/9781394233953.ch2.

D. O. Hassan and B. A. Hassan, “A comprehensive systematic review of machine learning in the retail industry: classifications, limitations, opportunities, and challenges,” Neural Comput. Appl., vol. 37, no. 4, pp. 2035–2070, 2025, doi: https://doi.org/10.1007/s00521-024-10869-w.

M. Y. Shams, Z. Tarek, and A. M. Elshewey, “A novel RFE-GRU model for diabetes classification using PIMA Indian dataset,” Sci. Rep., vol. 15, no. 1, p. 982, 2025, doi: https://doi.org/10.1038/s41598-024-82420-9.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License