
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Application of Adaptive Neuro Fuzzy Inference System (ANFIS) Method in Estimating State of Charge (SOC) and State of Health (SOH) of Lithium-Ion Batteries
Corresponding Author(s) : Selamat Muslimin
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 4, November 2025
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Manzetti and F. Mariasiu, “Electric vehicle battery technologies: From present state to future systems,” Renew. Sustain. Energy Rev., vol. 51, pp. 1004–1012, 2015, doi: 10.1016/j.rser.2015.07.010.
- A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology,” J. Power Sources, vol. 80, no. 1, pp. 293–300, 1999, doi: 10.1016/S0378-7753(99)00079-8
- T. Zahid, K. Xu, W. Li, C. Li, and H. Li, “State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles,” Energy, vol. 162, pp. 871–882, 2018, doi: 10.1016/j.energy.2018.08.071.
- J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017, doi: 10.3390/electronics6040102.
- P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.
- M. A. Awadallah and B. Venkatesh, “Accuracy improvement of SOC estimation in lithium-ion batteries,” J. Energy Storage, vol. 6, pp. 95–104, 2016, doi: 10.1016/j.est.2016.03.003.
- D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019, doi: 10.1109/ACCESS.2019.2942213.
- P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024, doi: 10.3390/batteries10010034.
- [15] D. Selvabharathi and N. Muruganantham, “Battery health and performance monitoring system: A closer look at state of health (SOH) assessment methods of a lead-acid battery,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 1, pp. 261–267, 2019, doi: 10.11591/ijeecs.v18.i1.pp261-267.
- M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020, doi: 10.20527/klik.v7i1.290
- M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023.
- N. Yang, X. Zhang, and G. Li, “State of charge estimation for pulse discharge of a LiFePO₄ battery by a revised Ah counting,” Electrochim. Acta, vol. 151, pp. 63–71, Jan. 2015, doi: 10.1016/j.electacta.2014.11.011.
- Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. [Online]. Available: https://doi.org/10.1016/j.energy.2024.133041.
- A. Massing, “A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries,” Analog Devices, 2017.
- R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical review on the battery state of charge estimation methods for electric vehicles,” IEEE Access, vol. 6, pp. 1832–1843, 2017, doi: 10.1109/ACCESS.2017.2780258.
- J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 5, 2020, [verify volume/issue if needed].
- T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020, doi: 10.14801/jkiit.2020.18.5.55.
- T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.113988.
- C. H. Cai, D. Du, and Z. Y. Liu, “Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS),” in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 2, pp. 1068–1073, 2003, doi: 10.1109/FUZZ.2003.1206580.
- G. Guo, P. Xu, Z. Bai, S. Zhou, G. Xu, and B. Cao, “Optimization of Ni-MH battery fast charging in electric vehicles using dynamic data mining and ANFIS,” in Lect. Notes Comput. Sci., vol. 5227, pp. 468–475, 2008, doi: 10.1007/978-3-540-85984-0_56.
- W. S. Kemal and M. Alhasa, Modeling of Tropospheric Delays Using ANFIS, Springer Briefs in Meteorology, 2016. [Online]. Available: http://www.springer.com/series/13553
- M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd ed. Pearson Education. [2019].
- J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015, doi: 10.1109/IECON.2015.7392303.
- K. H. Chao and J. W. Chen, “State-of-health estimator based on extension theory with a learning mechanism for lead-acid batteries,” Expert Syst. Appl., vol. 38, no. 12, pp. 15183–15193, 2011, doi: 10.1016/j.eswa.2011.05.084.
- H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
- H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
- M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2025.236414.
- M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.est.2025.115371.
- K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011, doi: 10.1109/TVT.2010.2089647.
- Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. [Online]. Available: https://doi.org/10.1016/j.est.2025.115952.
- F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.
References
S. Manzetti and F. Mariasiu, “Electric vehicle battery technologies: From present state to future systems,” Renew. Sustain. Energy Rev., vol. 51, pp. 1004–1012, 2015, doi: 10.1016/j.rser.2015.07.010.
A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology,” J. Power Sources, vol. 80, no. 1, pp. 293–300, 1999, doi: 10.1016/S0378-7753(99)00079-8
T. Zahid, K. Xu, W. Li, C. Li, and H. Li, “State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles,” Energy, vol. 162, pp. 871–882, 2018, doi: 10.1016/j.energy.2018.08.071.
J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017, doi: 10.3390/electronics6040102.
P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.
M. A. Awadallah and B. Venkatesh, “Accuracy improvement of SOC estimation in lithium-ion batteries,” J. Energy Storage, vol. 6, pp. 95–104, 2016, doi: 10.1016/j.est.2016.03.003.
D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019, doi: 10.1109/ACCESS.2019.2942213.
P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024, doi: 10.3390/batteries10010034.
[15] D. Selvabharathi and N. Muruganantham, “Battery health and performance monitoring system: A closer look at state of health (SOH) assessment methods of a lead-acid battery,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 1, pp. 261–267, 2019, doi: 10.11591/ijeecs.v18.i1.pp261-267.
M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020, doi: 10.20527/klik.v7i1.290
M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023.
N. Yang, X. Zhang, and G. Li, “State of charge estimation for pulse discharge of a LiFePO₄ battery by a revised Ah counting,” Electrochim. Acta, vol. 151, pp. 63–71, Jan. 2015, doi: 10.1016/j.electacta.2014.11.011.
Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. [Online]. Available: https://doi.org/10.1016/j.energy.2024.133041.
A. Massing, “A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries,” Analog Devices, 2017.
R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical review on the battery state of charge estimation methods for electric vehicles,” IEEE Access, vol. 6, pp. 1832–1843, 2017, doi: 10.1109/ACCESS.2017.2780258.
J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 5, 2020, [verify volume/issue if needed].
T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020, doi: 10.14801/jkiit.2020.18.5.55.
T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. [Online]. Available: https://doi.org/10.1016/j.est.2024.113988.
C. H. Cai, D. Du, and Z. Y. Liu, “Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS),” in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 2, pp. 1068–1073, 2003, doi: 10.1109/FUZZ.2003.1206580.
G. Guo, P. Xu, Z. Bai, S. Zhou, G. Xu, and B. Cao, “Optimization of Ni-MH battery fast charging in electric vehicles using dynamic data mining and ANFIS,” in Lect. Notes Comput. Sci., vol. 5227, pp. 468–475, 2008, doi: 10.1007/978-3-540-85984-0_56.
W. S. Kemal and M. Alhasa, Modeling of Tropospheric Delays Using ANFIS, Springer Briefs in Meteorology, 2016. [Online]. Available: http://www.springer.com/series/13553
M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd ed. Pearson Education. [2019].
J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015, doi: 10.1109/IECON.2015.7392303.
K. H. Chao and J. W. Chen, “State-of-health estimator based on extension theory with a learning mechanism for lead-acid batteries,” Expert Syst. Appl., vol. 38, no. 12, pp. 15183–15193, 2011, doi: 10.1016/j.eswa.2011.05.084.
H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2025.236414.
M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. [Online]. Available: https://doi.org/10.1016/j.est.2025.115371.
K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011, doi: 10.1109/TVT.2010.2089647.
Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. [Online]. Available: https://doi.org/10.1016/j.est.2025.115952.
F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.