Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Nov 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) Method in Estimating State of Charge (SOC) and State of Health (SOH) of Lithium-Ion Batteries

https://doi.org/10.22219/kinetik.v10i4.2357
Selamat Muslimin
Sriwijaya State Polytechnic
Ekawati Prihatini
Sriwijaya State Polytechnic
Nyayu Latifah Husni
Sriwijaya State Polytechnic
Wahyu Caesandra
Opole University of Technology

Corresponding Author(s) : Selamat Muslimin

selamet_muslimin@polsri.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Nov 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The increasing reliance on lithium-ion batteries (LIBs) for electric vehicles and portable electronics demands accurate monitoring of battery performance, particularly the State of Charge (SOC) and State of Health (SOH). Conventional estimation methods—such as Coulomb counting, Kalman filtering, and equivalent circuit modeling—face challenges under dynamic conditions due to drift and limited adaptability. Recent studies have explored machine learning and neuro-fuzzy approaches to enhance prediction accuracy, yet many lack integration of real-time hybrid learning or struggle with high estimation error in noisy data environments. This research aims to apply the Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate SOC and SOH using experimental data from a 48V lithium-ion battery. The novelty lies in combining voltage, current, and capacity data within a MATLAB-based ANFIS framework that employs a hybrid learning algorithm integrating backpropagation and Recursive Least Squares Estimation (RLSE). Training data for SOC estimation used charging voltage and current, while SOH estimation incorporated discharging data and capacity. Results show that ANFIS achieved high accuracy with RMSE of 0.1466 and MAE of 0.021 for SOC, and RMSE of 0.012 and MAE of 0.0017 for SOH. The estimated SOH was 33.61%, closely aligned with actual values. These findings confirm ANFIS as a robust and adaptive method for real-time battery diagnostics. Future work will explore multi-input hybrid models, the integration of IoT-based BMS telemetry, and testing across diverse battery chemistries to generalize the model's performance and extend its application in smart energy systems.

Keywords

Adaptive Neuro Fuzzy Inference System (ANFIS) Lithium Ion Battery; State of Charge (SOC) State of Health (SOH)
Muslimin, S., Prihatini, E., Husni, N. L., & Caesandra, W. (2025). The Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) Method in Estimating State of Charge (SOC) and State of Health (SOH) of Lithium-Ion Batteries. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2357
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. SDing, Ning, Krishnamachar Prasad, and Tek Tjing Lie. "The electric vehicle: a review." International Journal of Electric and Hybrid Vehicles 9.1 (2017): 49-66. https://doi.org/10.1504/IJEHV.2017.082816
  2. Manikandan, P., et al. "Lithium Ion Battery Pack Robust State of Charge and Charging Method Estimation using Fuzzy Logic." 2025 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2025. https://doi.org/10.1109/ICICCS65191.2025.10984683
  3. Tripp-Barba, Carolina, et al. "A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles." World Electric Vehicle Journal 16.2 (2025): 57. https://doi.org/10.3390/wevj16020057
  4. J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017. http://doi.org/10.3390/electronics6040102
  5. P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.
  6. Fan, Xichen, et al. "An improved Transformer incorporating fuzzy information entropy and average input strategy for SOC estimation of lithium-ion battery." Energy (2025): 136953. https://doi.org/10.1016/j.energy.2025.136953
  7. D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019. http://doi.org/10.1109/ACCESS.2019.2942213
  8. P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024. http://doi.org/10.3390/batteries10010034
  9. Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
  10. M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020. http://doi.org/10.20527/klik.v7i1.290
  11. M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023. https://doi.org/10.47065/bit.v4i4.986
  12. Vishwakarma, Vinod Kumar, Swapnil Srivastava, and Venktesh Mishra. "Strategies of battery management systems in electric vehicles: a review." International Journal of Modelling and Simulation (2025): 1-31. https://doi.org/10.1080/02286203.2025.2523065
  13. Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. https://doi.org/10.1016/j.energy.2024.133041
  14. Soyoye, Babatunde D., et al. "State of charge and state of health estimation in electric vehicles: challenges, approaches and future directions." Batteries 11.1 (2025): 32. https://doi.org/10.3390/batteries11010032
  15. Pisani Orta, Miguel Antonio, David García Elvira, and Hugo Valderrama Blaví. "Review of State-of-Charge Estimation Methods for Electric Vehicle Applications." World Electric Vehicle Journal 16.2 (2025): 87. https://doi.org/10.3390/wevj16020087
  16. J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 23, 2020. https://doi.org/10.3390/app10238644
  17. T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020. http://doi.org/10.14801/jkiit.2020.18.5.55
  18. T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. https://doi.org/10.1016/j.est.2024.113988
  19. Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS
  20. An, Zhensheng, et al. "SOC Estimation Method Based on Variational Bayesian Recalibrated Unscented Kalman Filter Considering Error Compensation Strategy." Journal of The Electrochemical Society 172.7 (2025): 070536. http://doi.org/10.1149/1945-7111/adf0e6
  21. Mhady, Ahmed Abo, et al. "New Hybrid Models Integrating the Firefly Optimization Algorithm with the Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems to Improve Estimation at Completion." Journal of Construction Engineering and Management 151.11 (2025): 04025160. https://doi.org/10.1061/JCEMD4.COENG-16487
  22. Oguanobi, Nonso C., et al. "Modeling and kinetics investigation of adsorptive properties and regeneration of modified clay on azo dyes removal from aqueous solution using artificial intelligence (ANN, ANFIS) and RSM." Sigma Journal of Engineering and Natural Sciences 43.1 (2025): 316-339. http://doi.org/10.14744/sigma.2025.00023
  23. J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015. http://doi.org/10.1109/IECON.2015.7392303
  24. Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
  25. H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. https://doi.org/10.1016/j.etran.2025.100420
  26. H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
  27. M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. https://doi.org/10.1016/j.jpowsour.2025.236414
  28. M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. https://doi.org/10.1016/j.est.2025.115371
  29. K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011. http://doi.org/10.1109/TVT.2010.2089647
  30. Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. https://doi.org/10.1109/TVT.2010.2089647
  31. F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.
Read More

References


SDing, Ning, Krishnamachar Prasad, and Tek Tjing Lie. "The electric vehicle: a review." International Journal of Electric and Hybrid Vehicles 9.1 (2017): 49-66. https://doi.org/10.1504/IJEHV.2017.082816

Manikandan, P., et al. "Lithium Ion Battery Pack Robust State of Charge and Charging Method Estimation using Fuzzy Logic." 2025 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2025. https://doi.org/10.1109/ICICCS65191.2025.10984683

Tripp-Barba, Carolina, et al. "A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles." World Electric Vehicle Journal 16.2 (2025): 57. https://doi.org/10.3390/wevj16020057

J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017. http://doi.org/10.3390/electronics6040102

P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.

Fan, Xichen, et al. "An improved Transformer incorporating fuzzy information entropy and average input strategy for SOC estimation of lithium-ion battery." Energy (2025): 136953. https://doi.org/10.1016/j.energy.2025.136953

D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019. http://doi.org/10.1109/ACCESS.2019.2942213

P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024. http://doi.org/10.3390/batteries10010034

Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033

M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020. http://doi.org/10.20527/klik.v7i1.290

M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023. https://doi.org/10.47065/bit.v4i4.986

Vishwakarma, Vinod Kumar, Swapnil Srivastava, and Venktesh Mishra. "Strategies of battery management systems in electric vehicles: a review." International Journal of Modelling and Simulation (2025): 1-31. https://doi.org/10.1080/02286203.2025.2523065

Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. https://doi.org/10.1016/j.energy.2024.133041

Soyoye, Babatunde D., et al. "State of charge and state of health estimation in electric vehicles: challenges, approaches and future directions." Batteries 11.1 (2025): 32. https://doi.org/10.3390/batteries11010032

Pisani Orta, Miguel Antonio, David García Elvira, and Hugo Valderrama Blaví. "Review of State-of-Charge Estimation Methods for Electric Vehicle Applications." World Electric Vehicle Journal 16.2 (2025): 87. https://doi.org/10.3390/wevj16020087

J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 23, 2020. https://doi.org/10.3390/app10238644

T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020. http://doi.org/10.14801/jkiit.2020.18.5.55

T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. https://doi.org/10.1016/j.est.2024.113988

Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS

An, Zhensheng, et al. "SOC Estimation Method Based on Variational Bayesian Recalibrated Unscented Kalman Filter Considering Error Compensation Strategy." Journal of The Electrochemical Society 172.7 (2025): 070536. http://doi.org/10.1149/1945-7111/adf0e6

Mhady, Ahmed Abo, et al. "New Hybrid Models Integrating the Firefly Optimization Algorithm with the Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems to Improve Estimation at Completion." Journal of Construction Engineering and Management 151.11 (2025): 04025160. https://doi.org/10.1061/JCEMD4.COENG-16487

Oguanobi, Nonso C., et al. "Modeling and kinetics investigation of adsorptive properties and regeneration of modified clay on azo dyes removal from aqueous solution using artificial intelligence (ANN, ANFIS) and RSM." Sigma Journal of Engineering and Natural Sciences 43.1 (2025): 316-339. http://doi.org/10.14744/sigma.2025.00023

J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015. http://doi.org/10.1109/IECON.2015.7392303

Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033

H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. https://doi.org/10.1016/j.etran.2025.100420

H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420

M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. https://doi.org/10.1016/j.jpowsour.2025.236414

M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. https://doi.org/10.1016/j.est.2025.115371

K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011. http://doi.org/10.1109/TVT.2010.2089647

Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. https://doi.org/10.1109/TVT.2010.2089647

F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License