
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) Method in Estimating State of Charge (SOC) and State of Health (SOH) of Lithium-Ion Batteries
Corresponding Author(s) : Selamat Muslimin
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 4, November 2025
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- SDing, Ning, Krishnamachar Prasad, and Tek Tjing Lie. "The electric vehicle: a review." International Journal of Electric and Hybrid Vehicles 9.1 (2017): 49-66. https://doi.org/10.1504/IJEHV.2017.082816
- Manikandan, P., et al. "Lithium Ion Battery Pack Robust State of Charge and Charging Method Estimation using Fuzzy Logic." 2025 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2025. https://doi.org/10.1109/ICICCS65191.2025.10984683
- Tripp-Barba, Carolina, et al. "A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles." World Electric Vehicle Journal 16.2 (2025): 57. https://doi.org/10.3390/wevj16020057
- J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017. http://doi.org/10.3390/electronics6040102
- P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.
- Fan, Xichen, et al. "An improved Transformer incorporating fuzzy information entropy and average input strategy for SOC estimation of lithium-ion battery." Energy (2025): 136953. https://doi.org/10.1016/j.energy.2025.136953
- D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019. http://doi.org/10.1109/ACCESS.2019.2942213
- P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024. http://doi.org/10.3390/batteries10010034
- Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
- M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020. http://doi.org/10.20527/klik.v7i1.290
- M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023. https://doi.org/10.47065/bit.v4i4.986
- Vishwakarma, Vinod Kumar, Swapnil Srivastava, and Venktesh Mishra. "Strategies of battery management systems in electric vehicles: a review." International Journal of Modelling and Simulation (2025): 1-31. https://doi.org/10.1080/02286203.2025.2523065
- Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. https://doi.org/10.1016/j.energy.2024.133041
- Soyoye, Babatunde D., et al. "State of charge and state of health estimation in electric vehicles: challenges, approaches and future directions." Batteries 11.1 (2025): 32. https://doi.org/10.3390/batteries11010032
- Pisani Orta, Miguel Antonio, David García Elvira, and Hugo Valderrama Blaví. "Review of State-of-Charge Estimation Methods for Electric Vehicle Applications." World Electric Vehicle Journal 16.2 (2025): 87. https://doi.org/10.3390/wevj16020087
- J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 23, 2020. https://doi.org/10.3390/app10238644
- T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020. http://doi.org/10.14801/jkiit.2020.18.5.55
- T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. https://doi.org/10.1016/j.est.2024.113988
- Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS
- An, Zhensheng, et al. "SOC Estimation Method Based on Variational Bayesian Recalibrated Unscented Kalman Filter Considering Error Compensation Strategy." Journal of The Electrochemical Society 172.7 (2025): 070536. http://doi.org/10.1149/1945-7111/adf0e6
- Mhady, Ahmed Abo, et al. "New Hybrid Models Integrating the Firefly Optimization Algorithm with the Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems to Improve Estimation at Completion." Journal of Construction Engineering and Management 151.11 (2025): 04025160. https://doi.org/10.1061/JCEMD4.COENG-16487
- Oguanobi, Nonso C., et al. "Modeling and kinetics investigation of adsorptive properties and regeneration of modified clay on azo dyes removal from aqueous solution using artificial intelligence (ANN, ANFIS) and RSM." Sigma Journal of Engineering and Natural Sciences 43.1 (2025): 316-339. http://doi.org/10.14744/sigma.2025.00023
- J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015. http://doi.org/10.1109/IECON.2015.7392303
- Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
- H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. https://doi.org/10.1016/j.etran.2025.100420
- H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
- M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. https://doi.org/10.1016/j.jpowsour.2025.236414
- M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. https://doi.org/10.1016/j.est.2025.115371
- K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011. http://doi.org/10.1109/TVT.2010.2089647
- Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. https://doi.org/10.1109/TVT.2010.2089647
- F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.
References
SDing, Ning, Krishnamachar Prasad, and Tek Tjing Lie. "The electric vehicle: a review." International Journal of Electric and Hybrid Vehicles 9.1 (2017): 49-66. https://doi.org/10.1504/IJEHV.2017.082816
Manikandan, P., et al. "Lithium Ion Battery Pack Robust State of Charge and Charging Method Estimation using Fuzzy Logic." 2025 International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2025. https://doi.org/10.1109/ICICCS65191.2025.10984683
Tripp-Barba, Carolina, et al. "A Systematic Mapping Study on State Estimation Techniques for Lithium-Ion Batteries in Electric Vehicles." World Electric Vehicle Journal 16.2 (2025): 57. https://doi.org/10.3390/wevj16020057
J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado, “SOC estimation for lithium-ion batteries: Review and future challenges,” Electronics, vol. 6, no. 4, p. 102, 2017. http://doi.org/10.3390/electronics6040102
P. Venugopal and T. Vigneswaran, “State-of-charge estimation methods for Li-ion batteries in electric vehicles,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, pp. 37–46, 2019.
Fan, Xichen, et al. "An improved Transformer incorporating fuzzy information entropy and average input strategy for SOC estimation of lithium-ion battery." Energy (2025): 136953. https://doi.org/10.1016/j.energy.2025.136953
D. N. T. How, M. A. Hannan, M. S. H. Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review,” IEEE Access, vol. 7, pp. 136116–136136, 2019. http://doi.org/10.1109/ACCESS.2019.2942213
P. Dini, A. Colicelli, and S. Saponara, “Review on modeling and SOC/SOH estimation of batteries for automotive applications,” Batteries, vol. 10, no. 1, 2024. http://doi.org/10.3390/batteries10010034
Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
M. I. D. Prasetyo, A. Tjahjono, and N. A. Windarko, “Feed Forward Neural Network sebagai algoritma estimasi state of charge baterai lithium polymer,” Klik - Kumpul. J. Ilmu Komput., vol. 7, no. 1, p. 13, 2020. http://doi.org/10.20527/klik.v7i1.290
M. Muharrom, “Analisis komparasi algoritma data mining Naive Bayes, K-Nearest Neighbors dan regresi linier dalam prediksi harga emas,” J. Teknol. Inf., vol. 4, no. 4, pp. 430–438, 2023. https://doi.org/10.47065/bit.v4i4.986
Vishwakarma, Vinod Kumar, Swapnil Srivastava, and Venktesh Mishra. "Strategies of battery management systems in electric vehicles: a review." International Journal of Modelling and Simulation (2025): 1-31. https://doi.org/10.1080/02286203.2025.2523065
Z. Wang, H. Wei, Y. Xi, and G. Xiao, “Data-driven energy utilization for plug-in hybrid electric bus with driving pattern application and battery health considerations,” Energy, vol. 310, 133041, Nov. 2024. https://doi.org/10.1016/j.energy.2024.133041
Soyoye, Babatunde D., et al. "State of charge and state of health estimation in electric vehicles: challenges, approaches and future directions." Batteries 11.1 (2025): 32. https://doi.org/10.3390/batteries11010032
Pisani Orta, Miguel Antonio, David García Elvira, and Hugo Valderrama Blaví. "Review of State-of-Charge Estimation Methods for Electric Vehicle Applications." World Electric Vehicle Journal 16.2 (2025): 87. https://doi.org/10.3390/wevj16020087
J. Park, J. Lee, S. Kim, and I. Lee, “Real-time state of charge estimation for each cell of lithium battery pack using neural networks,” Appl. Sci., vol. 10, no. 23, 2020. https://doi.org/10.3390/app10238644
T.-H. Cho, H.-R. Hwang, J.-H. Lee, and I.-S. Lee, “Battery state-of-charge estimation using ANN and ANFIS for photovoltaic system,” J. Korean Inst. Inf. Technol., vol. 18, no. 5, pp. 55–64, 2020. http://doi.org/10.14801/jkiit.2020.18.5.55
T. Liu, D. Li, K. Wang, and Q. Lu, "Estimation of battery capacity degeneration based on an improved neural fuzzy inference system under dynamic operating conditions," Journal of Energy Storage, vol. 102, Part A, 113988, Nov. 2024. https://doi.org/10.1016/j.est.2024.113988
Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS
An, Zhensheng, et al. "SOC Estimation Method Based on Variational Bayesian Recalibrated Unscented Kalman Filter Considering Error Compensation Strategy." Journal of The Electrochemical Society 172.7 (2025): 070536. http://doi.org/10.1149/1945-7111/adf0e6
Mhady, Ahmed Abo, et al. "New Hybrid Models Integrating the Firefly Optimization Algorithm with the Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems to Improve Estimation at Completion." Journal of Construction Engineering and Management 151.11 (2025): 04025160. https://doi.org/10.1061/JCEMD4.COENG-16487
Oguanobi, Nonso C., et al. "Modeling and kinetics investigation of adsorptive properties and regeneration of modified clay on azo dyes removal from aqueous solution using artificial intelligence (ANN, ANFIS) and RSM." Sigma Journal of Engineering and Natural Sciences 43.1 (2025): 316-339. http://doi.org/10.14744/sigma.2025.00023
J. Marchildon, M. L. Doumbia, and K. Agbossou, “SOC and SOH characterisation of lead acid batteries,” in Proc. IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 1442–1446, 2015. http://doi.org/10.1109/IECON.2015.7392303
Budiman, Arief S., et al. "Estimation of Lead Acid Battery Degradation–A Model for the Optimisation of Battery Energy Storage System using Machine Learning." (2025). https://doi.org/10.3390/electrochem6030033
H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. https://doi.org/10.1016/j.etran.2025.100420
H. Yu, H. Zhang, Z. Zhang, and S. Yang, “State estimation of lithium-ion batteries via physics-machine learning combined methods: A methodological review and future perspectives,” eTransportation, vol. 24, 100420, May 2025. [Online]. Available: https://doi.org/10.1016/j.etran.2025.100420
M. Waseem, G. S. Lakshmi, M. Amir, M. Ahmad, and M. Suhaib, “Advancement in battery health monitoring methods for electric vehicles: Battery modelling, state estimation, and internet-of-things based methods,” J. Power Sources, vol. 633, 236414, Mar. 2025. https://doi.org/10.1016/j.jpowsour.2025.236414
M. H. H. Khine, C. G. Kim, and N. Aunsri, “A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries,” J. Energy Storage, vol. 111, 115371, Mar. 2025. https://doi.org/10.1016/j.est.2025.115371
K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76–88, 2011. http://doi.org/10.1109/TVT.2010.2089647
Z. Chen, Y. Peng, J. Shen, Q. Zhang, Y. Liu, Y. Zhang, X. Xia, and Y. Liu, "State of health estimation for lithium-ion batteries based on fragmented charging data and improved gated recurrent unit neural network," Journal of Energy Storage, vol. 115, 115952, Apr. 2025. https://doi.org/10.1109/TVT.2010.2089647
F. Cempaka, A. Muid, and I. Ruslianto, “Rancang bangun lengan robot,” J. Coding, Sist. Komput. Untan, vol. 4, no. 1, pp. 32–42, 2016.