
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Multi-objective MPPT Optimisation for PV System Using QHBM Algorithm in Madura Island
Corresponding Author(s) : Aripriharta
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 4, November 2025
Abstract
This study presents the application of the Queen Honey Bee Migration (QHBM) algorithm, for Maximum Power Point Tracking (MPPT) in an off-grid photovoltaic (PV) system on Madura Island. Implemented in Python, QHBM optimizes a 3.3 kW PV array (six polycrystalline silicon panels, 550 W each, configured in 2-series and 3-parallel) under tropical conditions (irradiation: 860–970 W/m², temperature: 26–30°C) using data from the East Java BMKG Trunojoyo Meteorological Station. QHBM’s multi-objective optimization balances power conversion efficiency (95.0–99.1%), power quality (THD < 4.5%), and component longevity (current ripple: 3.1–3.2 A), outperforming Perturb and Observe (P&O: 78% efficiency under low irradiation and 34% under partial shading) and Particle Swarm Optimization (PSO: 85% and 88%). Trade-offs are managed by minimizing ripple-induced thermal stress (10–15% lower than P&O) and achieving rapid convergence (0–3 ms vs. 300–500 ms for PSO), ensuring reliability in Madura’s dynamic climate. The system, integrated with a single-phase full-bridge inverter (96% efficiency), delivers a consistent daily energy output of 14,941.87 Wh (SD ±267.45 Wh) and reduces CO2 emissions by 118.49 kgCO2e annually. QHBM was chosen over P&O and PSO for its superior efficiency, faster response, and robustness under partial shading and noisy irradiation (±10% variations), offering a scalable solution for sustainable electrification in Indonesia’s archipelagic regions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J. F. Lin, “An Enhanced Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Conditions,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 392–408, 2022. https://doi.org/10.1016/j.eti.2025.104410
- A. W. Ibrahim et al., “PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions,” Chinese Journal of Electrical Engineering, vol. 6, no. 4, pp. 106–121, Dec. 2020. https://doi.org/10.23919/CJEE.2020.000035
- M. E. Sallam, M. A. Attia, A. Y. Abdelaziz, M. A. Sameh, and A. H. Yakout, “Optimal Sizing of Different Energy Sources in an Isolated Hybrid Microgrid Using Turbulent Flow Water-Based Optimization Algorithm,” IEEE Access, vol. 10, pp. 61922–61936, 2022. https://doi.org/10.1109/ACCESS.2022.3182032
- A. Aripriharta, E. Asnarindra, A. D. Nibrosoma, L. Gumilar, and M. A. Habibi, “Pelacakan Daya Maksimum Photovoltaic Dalam Keadaan Transisi Berbayang Menggunakan Algoritma MPPT Queen Honey Bee Migration (QHBM),” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 3, pp. 85–94, Jul. 2023. https://doi.org/10.14710/transmisi.25.3.85-94
- R. Cheraghi and M. Hossein Jahangir, “Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms,” Energy Convers Manag, vol. 294, p. 117515, 2023. https://doi.org/10.1016/j.enconman.2023.117515
- I. Pervez, C. Antoniadis, and Y. Massoud, “A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT,” IEEE Access, vol. 10, pp. 26090–26100, 2022. https://doi.org/10.1109/ACCESS.2022.3156124
- A. Ballaji, R. Dash, V. Subburaj, J. R. Kalvakurthi, D. Swain, and S. C. Swain, “Design & Development of MPPT Using PSO with Predefined Search Space Based on Fuzzy Fokker Planck Solution,” IEEE Access, vol. 10, pp. 80764–80783, 2022. https://doi.org/10.1109/ACCESS.2022.3195036
- B. Ghania, O. Amar, and M. Hichem, “Etude and Optimization of MPPT Controllers in Photovoltaic Systems with Battery Energy Storage,” The Scientific Bulletin of Electrical Engineering Faculty, vol. 23, no. 2, pp. 12–19, Dec. 2023. https://doi.org/10.2478/sbeef-2023-0015
- A. Aripriharta et al., “The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems,” Applied Computational Intelligence and Soft Computing, vol. 2022, 2022. https://doi.org/10.1155/2022/1996410
- G.-J. Jong, Aripriharta, Hendrick, and G.-J. Horng, “A novel queen honey bee migration (QHBM) algorithm for sink repositioning in wireless sensor network,” Wirel Pers Commun, vol. 95, pp. 3209–3232, 2017. https://doi.org/10.1007/s11277-017-3991-z
- C. Liu and R. Cheung, “Advanced Algorithm for MPPT Control of Photovoltaic Systems.”
- R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” Jan. 01, 2021, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.17775/CSEEJPES.2019.02720
- M. J. Alshareef, “An Effective Falcon Optimization Algorithm Based MPPT Under Partial Shaded Photovoltaic Systems,” IEEE Access, vol. 10, pp. 131345–131360, 2022. https://doi.org/10.1109/ACCESS.2022.3226654
- A. I. M. Ali et al., “An Enhanced P&O MPPT Algorithm with Concise Search Area for Grid-Tied PV Systems,” IEEE Access, vol. 11, pp. 79408–79421, 2023. https://doi.org/10.1109/ACCESS.2023.3298106
- W. Jinpeng, Y. Qinxue, Z. Bo, Jeremy-Gillbanks, and Z. Xin, “Study on MPPT Algorithm Based on an Efficient Hybrid Conjugate Gradient Method in a Photovoltaic System,” IEEE Access, vol. 11, pp. 4219–4227, 2023. http://dx.doi.org/10.1109/ACCESS.2022.3233826
- A. Aripriharta et al., “Comparison Of Queen Honey Bee Colony Migration With Various MPPTS on Photovoltaic System Under Shaded Conditions,” EUREKA, Physics and Engineering, vol. 2023, no. 4, pp. 52–62, Jul. 2023. http://dx.doi.org/10.1051/e3sconf/202447301003
- Aripriharta et al., “Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 15, no. 1, pp. 12–22, 2024. https://doi.org/10.55981/j.mev.2024.742
- A. Aripriharta, M. Y. Fazi, M. C. Bagaskoro, and R. N. Nikmah, “Pengembangan Prototipe PLTPH Untuk Efisiensi Energi Penerangan Jalan Di Desa Ngisong Kota Batu,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 5, no. 2, pp. 321–330, 2024. https://doi.org/10.24036/jtein.v5i2.571
- F. Wicaksono Yunianto Saputra et al., “CYCLOTRON : Jurnal Teknik Elektro Preliminary Analysis of DC Grid with Photovoltaic for Row House Considering Off-Grid and On-Grid Conditions,” 2025.
- Aripriharta, A. Firly Aprilia Putri, S. Omar, and M. Wahyu Prasetyo, “Multiple Range of Output Converter for Hazard Sensors with PV System,” E3S Web of Conferences, vol. 473, p. 01003, Jan. 2024, https://doi.org/10.1051/e3sconf/202447301003
- A. N. Handayani, F. A. Pusparani, D. Lestari, I. M. Wirawan, A. P. Wibawa, and O. Fukuda, “Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 765–779, 2023. https://doi.org/10.31763/ijrcs.v3i4.1147
- S. Ahmad et al., “Direct Power Control Based on Point of Common Coupling Voltage Modulation for Grid-Tied AC Microgrid PV Inverter,” IEEE Access, vol. 10, pp. 109187–109202, 2022. https://doi.org/10.1109/ACCESS.2022.3213939
- S. Adak, H. Cangi, B. Eid, and A. S. Yilmaz, “Developed analytical expression for current harmonic distortion of the PV system’s inverter in relation to the solar irradiance and temperature,” Electrical Engineering, vol. 103, no. 1, pp. 697–704, Feb. 2021. https://doi.org/10.1007/s00202-020-01110-7
- S. Ahmad et al., “Fuzzy logic-based direct power control method for pv inverter of grid-tied ac microgrid without phase-locked loop,” Electronics (Switzerland), vol. 10, no. 24, Dec. 2021. https://doi.org/10.3390/electronics10243095
- O. Abdel-Rahim and H. Wang, “A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems,” CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 191–200, Jun. 2020. http://dx.doi.org/10.24295/CPSSTPEA.2020.00016
References
I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J. F. Lin, “An Enhanced Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Conditions,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 392–408, 2022. https://doi.org/10.1016/j.eti.2025.104410
A. W. Ibrahim et al., “PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions,” Chinese Journal of Electrical Engineering, vol. 6, no. 4, pp. 106–121, Dec. 2020. https://doi.org/10.23919/CJEE.2020.000035
M. E. Sallam, M. A. Attia, A. Y. Abdelaziz, M. A. Sameh, and A. H. Yakout, “Optimal Sizing of Different Energy Sources in an Isolated Hybrid Microgrid Using Turbulent Flow Water-Based Optimization Algorithm,” IEEE Access, vol. 10, pp. 61922–61936, 2022. https://doi.org/10.1109/ACCESS.2022.3182032
A. Aripriharta, E. Asnarindra, A. D. Nibrosoma, L. Gumilar, and M. A. Habibi, “Pelacakan Daya Maksimum Photovoltaic Dalam Keadaan Transisi Berbayang Menggunakan Algoritma MPPT Queen Honey Bee Migration (QHBM),” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 3, pp. 85–94, Jul. 2023. https://doi.org/10.14710/transmisi.25.3.85-94
R. Cheraghi and M. Hossein Jahangir, “Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms,” Energy Convers Manag, vol. 294, p. 117515, 2023. https://doi.org/10.1016/j.enconman.2023.117515
I. Pervez, C. Antoniadis, and Y. Massoud, “A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT,” IEEE Access, vol. 10, pp. 26090–26100, 2022. https://doi.org/10.1109/ACCESS.2022.3156124
A. Ballaji, R. Dash, V. Subburaj, J. R. Kalvakurthi, D. Swain, and S. C. Swain, “Design & Development of MPPT Using PSO with Predefined Search Space Based on Fuzzy Fokker Planck Solution,” IEEE Access, vol. 10, pp. 80764–80783, 2022. https://doi.org/10.1109/ACCESS.2022.3195036
B. Ghania, O. Amar, and M. Hichem, “Etude and Optimization of MPPT Controllers in Photovoltaic Systems with Battery Energy Storage,” The Scientific Bulletin of Electrical Engineering Faculty, vol. 23, no. 2, pp. 12–19, Dec. 2023. https://doi.org/10.2478/sbeef-2023-0015
A. Aripriharta et al., “The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems,” Applied Computational Intelligence and Soft Computing, vol. 2022, 2022. https://doi.org/10.1155/2022/1996410
G.-J. Jong, Aripriharta, Hendrick, and G.-J. Horng, “A novel queen honey bee migration (QHBM) algorithm for sink repositioning in wireless sensor network,” Wirel Pers Commun, vol. 95, pp. 3209–3232, 2017. https://doi.org/10.1007/s11277-017-3991-z
C. Liu and R. Cheung, “Advanced Algorithm for MPPT Control of Photovoltaic Systems.”
R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” Jan. 01, 2021, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.17775/CSEEJPES.2019.02720
M. J. Alshareef, “An Effective Falcon Optimization Algorithm Based MPPT Under Partial Shaded Photovoltaic Systems,” IEEE Access, vol. 10, pp. 131345–131360, 2022. https://doi.org/10.1109/ACCESS.2022.3226654
A. I. M. Ali et al., “An Enhanced P&O MPPT Algorithm with Concise Search Area for Grid-Tied PV Systems,” IEEE Access, vol. 11, pp. 79408–79421, 2023. https://doi.org/10.1109/ACCESS.2023.3298106
W. Jinpeng, Y. Qinxue, Z. Bo, Jeremy-Gillbanks, and Z. Xin, “Study on MPPT Algorithm Based on an Efficient Hybrid Conjugate Gradient Method in a Photovoltaic System,” IEEE Access, vol. 11, pp. 4219–4227, 2023. http://dx.doi.org/10.1109/ACCESS.2022.3233826
A. Aripriharta et al., “Comparison Of Queen Honey Bee Colony Migration With Various MPPTS on Photovoltaic System Under Shaded Conditions,” EUREKA, Physics and Engineering, vol. 2023, no. 4, pp. 52–62, Jul. 2023. http://dx.doi.org/10.1051/e3sconf/202447301003
Aripriharta et al., “Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 15, no. 1, pp. 12–22, 2024. https://doi.org/10.55981/j.mev.2024.742
A. Aripriharta, M. Y. Fazi, M. C. Bagaskoro, and R. N. Nikmah, “Pengembangan Prototipe PLTPH Untuk Efisiensi Energi Penerangan Jalan Di Desa Ngisong Kota Batu,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 5, no. 2, pp. 321–330, 2024. https://doi.org/10.24036/jtein.v5i2.571
F. Wicaksono Yunianto Saputra et al., “CYCLOTRON : Jurnal Teknik Elektro Preliminary Analysis of DC Grid with Photovoltaic for Row House Considering Off-Grid and On-Grid Conditions,” 2025.
Aripriharta, A. Firly Aprilia Putri, S. Omar, and M. Wahyu Prasetyo, “Multiple Range of Output Converter for Hazard Sensors with PV System,” E3S Web of Conferences, vol. 473, p. 01003, Jan. 2024, https://doi.org/10.1051/e3sconf/202447301003
A. N. Handayani, F. A. Pusparani, D. Lestari, I. M. Wirawan, A. P. Wibawa, and O. Fukuda, “Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 765–779, 2023. https://doi.org/10.31763/ijrcs.v3i4.1147
S. Ahmad et al., “Direct Power Control Based on Point of Common Coupling Voltage Modulation for Grid-Tied AC Microgrid PV Inverter,” IEEE Access, vol. 10, pp. 109187–109202, 2022. https://doi.org/10.1109/ACCESS.2022.3213939
S. Adak, H. Cangi, B. Eid, and A. S. Yilmaz, “Developed analytical expression for current harmonic distortion of the PV system’s inverter in relation to the solar irradiance and temperature,” Electrical Engineering, vol. 103, no. 1, pp. 697–704, Feb. 2021. https://doi.org/10.1007/s00202-020-01110-7
S. Ahmad et al., “Fuzzy logic-based direct power control method for pv inverter of grid-tied ac microgrid without phase-locked loop,” Electronics (Switzerland), vol. 10, no. 24, Dec. 2021. https://doi.org/10.3390/electronics10243095
O. Abdel-Rahim and H. Wang, “A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems,” CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 191–200, Jun. 2020. http://dx.doi.org/10.24295/CPSSTPEA.2020.00016