Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Nov 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Multi-objective MPPT Optimisation for PV System Using QHBM Algorithm in Madura Island

https://doi.org/10.22219/kinetik.v10i4.2337
Agil Zaidan Nugraha
Universitas Negeri Malang
Aripriharta
Universitas Negeri Malang
Anik Nur Handayani
Universitas Negeri Malang

Corresponding Author(s) : Aripriharta

aripriharta.ft@um.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Nov 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This study presents the application of the Queen Honey Bee Migration (QHBM) algorithm, for Maximum Power Point Tracking (MPPT) in an off-grid photovoltaic (PV) system on Madura Island. Implemented in Python, QHBM optimizes a 3.3 kW PV array (six polycrystalline silicon panels, 550 W each, configured in 2-series and 3-parallel) under tropical conditions (irradiation: 860–970 W/m², temperature: 26–30°C) using data from the East Java BMKG Trunojoyo Meteorological Station. QHBM’s multi-objective optimization balances power conversion efficiency (95.0–99.1%), power quality (THD < 4.5%), and component longevity (current ripple: 3.1–3.2 A), outperforming Perturb and Observe (P&O: 78% efficiency under low irradiation and 34% under partial shading) and Particle Swarm Optimization (PSO: 85% and 88%). Trade-offs are managed by minimizing ripple-induced thermal stress (10–15% lower than P&O) and achieving rapid convergence (0–3 ms vs. 300–500 ms for PSO), ensuring reliability in Madura’s dynamic climate. The system, integrated with a single-phase full-bridge inverter (96% efficiency), delivers a consistent daily energy output of 14,941.87 Wh (SD ±267.45 Wh) and reduces CO2 emissions by 118.49 kgCO2e annually. QHBM was chosen over P&O and PSO for its superior efficiency, faster response, and robustness under partial shading and noisy irradiation (±10% variations), offering a scalable solution for sustainable electrification in Indonesia’s archipelagic regions.

Keywords

Madura MPPT PV system QHBM Algorithm Optimization
Nugraha, A. Z. ., Aripriharta, & Handayani, A. N. . (2025). Multi-objective MPPT Optimisation for PV System Using QHBM Algorithm in Madura Island. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2337
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J. F. Lin, “An Enhanced Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Conditions,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 392–408, 2022. https://doi.org/10.1016/j.eti.2025.104410
  2. A. W. Ibrahim et al., “PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions,” Chinese Journal of Electrical Engineering, vol. 6, no. 4, pp. 106–121, Dec. 2020. https://doi.org/10.23919/CJEE.2020.000035
  3. M. E. Sallam, M. A. Attia, A. Y. Abdelaziz, M. A. Sameh, and A. H. Yakout, “Optimal Sizing of Different Energy Sources in an Isolated Hybrid Microgrid Using Turbulent Flow Water-Based Optimization Algorithm,” IEEE Access, vol. 10, pp. 61922–61936, 2022. https://doi.org/10.1109/ACCESS.2022.3182032
  4. A. Aripriharta, E. Asnarindra, A. D. Nibrosoma, L. Gumilar, and M. A. Habibi, “Pelacakan Daya Maksimum Photovoltaic Dalam Keadaan Transisi Berbayang Menggunakan Algoritma MPPT Queen Honey Bee Migration (QHBM),” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 3, pp. 85–94, Jul. 2023. https://doi.org/10.14710/transmisi.25.3.85-94
  5. R. Cheraghi and M. Hossein Jahangir, “Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms,” Energy Convers Manag, vol. 294, p. 117515, 2023. https://doi.org/10.1016/j.enconman.2023.117515
  6. I. Pervez, C. Antoniadis, and Y. Massoud, “A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT,” IEEE Access, vol. 10, pp. 26090–26100, 2022. https://doi.org/10.1109/ACCESS.2022.3156124
  7. A. Ballaji, R. Dash, V. Subburaj, J. R. Kalvakurthi, D. Swain, and S. C. Swain, “Design & Development of MPPT Using PSO with Predefined Search Space Based on Fuzzy Fokker Planck Solution,” IEEE Access, vol. 10, pp. 80764–80783, 2022. https://doi.org/10.1109/ACCESS.2022.3195036
  8. B. Ghania, O. Amar, and M. Hichem, “Etude and Optimization of MPPT Controllers in Photovoltaic Systems with Battery Energy Storage,” The Scientific Bulletin of Electrical Engineering Faculty, vol. 23, no. 2, pp. 12–19, Dec. 2023. https://doi.org/10.2478/sbeef-2023-0015
  9. A. Aripriharta et al., “The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems,” Applied Computational Intelligence and Soft Computing, vol. 2022, 2022. https://doi.org/10.1155/2022/1996410
  10. G.-J. Jong, Aripriharta, Hendrick, and G.-J. Horng, “A novel queen honey bee migration (QHBM) algorithm for sink repositioning in wireless sensor network,” Wirel Pers Commun, vol. 95, pp. 3209–3232, 2017. https://doi.org/10.1007/s11277-017-3991-z
  11. C. Liu and R. Cheung, “Advanced Algorithm for MPPT Control of Photovoltaic Systems.”
  12. R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” Jan. 01, 2021, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.17775/CSEEJPES.2019.02720
  13. M. J. Alshareef, “An Effective Falcon Optimization Algorithm Based MPPT Under Partial Shaded Photovoltaic Systems,” IEEE Access, vol. 10, pp. 131345–131360, 2022. https://doi.org/10.1109/ACCESS.2022.3226654
  14. A. I. M. Ali et al., “An Enhanced P&O MPPT Algorithm with Concise Search Area for Grid-Tied PV Systems,” IEEE Access, vol. 11, pp. 79408–79421, 2023. https://doi.org/10.1109/ACCESS.2023.3298106
  15. W. Jinpeng, Y. Qinxue, Z. Bo, Jeremy-Gillbanks, and Z. Xin, “Study on MPPT Algorithm Based on an Efficient Hybrid Conjugate Gradient Method in a Photovoltaic System,” IEEE Access, vol. 11, pp. 4219–4227, 2023. http://dx.doi.org/10.1109/ACCESS.2022.3233826
  16. A. Aripriharta et al., “Comparison Of Queen Honey Bee Colony Migration With Various MPPTS on Photovoltaic System Under Shaded Conditions,” EUREKA, Physics and Engineering, vol. 2023, no. 4, pp. 52–62, Jul. 2023. http://dx.doi.org/10.1051/e3sconf/202447301003
  17. Aripriharta et al., “Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 15, no. 1, pp. 12–22, 2024. https://doi.org/10.55981/j.mev.2024.742
  18. A. Aripriharta, M. Y. Fazi, M. C. Bagaskoro, and R. N. Nikmah, “Pengembangan Prototipe PLTPH Untuk Efisiensi Energi Penerangan Jalan Di Desa Ngisong Kota Batu,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 5, no. 2, pp. 321–330, 2024. https://doi.org/10.24036/jtein.v5i2.571
  19. F. Wicaksono Yunianto Saputra et al., “CYCLOTRON : Jurnal Teknik Elektro Preliminary Analysis of DC Grid with Photovoltaic for Row House Considering Off-Grid and On-Grid Conditions,” 2025.
  20. Aripriharta, A. Firly Aprilia Putri, S. Omar, and M. Wahyu Prasetyo, “Multiple Range of Output Converter for Hazard Sensors with PV System,” E3S Web of Conferences, vol. 473, p. 01003, Jan. 2024, https://doi.org/10.1051/e3sconf/202447301003
  21. A. N. Handayani, F. A. Pusparani, D. Lestari, I. M. Wirawan, A. P. Wibawa, and O. Fukuda, “Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 765–779, 2023. https://doi.org/10.31763/ijrcs.v3i4.1147
  22. S. Ahmad et al., “Direct Power Control Based on Point of Common Coupling Voltage Modulation for Grid-Tied AC Microgrid PV Inverter,” IEEE Access, vol. 10, pp. 109187–109202, 2022. https://doi.org/10.1109/ACCESS.2022.3213939
  23. S. Adak, H. Cangi, B. Eid, and A. S. Yilmaz, “Developed analytical expression for current harmonic distortion of the PV system’s inverter in relation to the solar irradiance and temperature,” Electrical Engineering, vol. 103, no. 1, pp. 697–704, Feb. 2021. https://doi.org/10.1007/s00202-020-01110-7
  24. S. Ahmad et al., “Fuzzy logic-based direct power control method for pv inverter of grid-tied ac microgrid without phase-locked loop,” Electronics (Switzerland), vol. 10, no. 24, Dec. 2021. https://doi.org/10.3390/electronics10243095
  25. O. Abdel-Rahim and H. Wang, “A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems,” CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 191–200, Jun. 2020. http://dx.doi.org/10.24295/CPSSTPEA.2020.00016
Read More

References


I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J. F. Lin, “An Enhanced Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Conditions,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 392–408, 2022. https://doi.org/10.1016/j.eti.2025.104410

A. W. Ibrahim et al., “PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions,” Chinese Journal of Electrical Engineering, vol. 6, no. 4, pp. 106–121, Dec. 2020. https://doi.org/10.23919/CJEE.2020.000035

M. E. Sallam, M. A. Attia, A. Y. Abdelaziz, M. A. Sameh, and A. H. Yakout, “Optimal Sizing of Different Energy Sources in an Isolated Hybrid Microgrid Using Turbulent Flow Water-Based Optimization Algorithm,” IEEE Access, vol. 10, pp. 61922–61936, 2022. https://doi.org/10.1109/ACCESS.2022.3182032

A. Aripriharta, E. Asnarindra, A. D. Nibrosoma, L. Gumilar, and M. A. Habibi, “Pelacakan Daya Maksimum Photovoltaic Dalam Keadaan Transisi Berbayang Menggunakan Algoritma MPPT Queen Honey Bee Migration (QHBM),” Transmisi: Jurnal Ilmiah Teknik Elektro, vol. 25, no. 3, pp. 85–94, Jul. 2023. https://doi.org/10.14710/transmisi.25.3.85-94

R. Cheraghi and M. Hossein Jahangir, “Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms,” Energy Convers Manag, vol. 294, p. 117515, 2023. https://doi.org/10.1016/j.enconman.2023.117515

I. Pervez, C. Antoniadis, and Y. Massoud, “A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT,” IEEE Access, vol. 10, pp. 26090–26100, 2022. https://doi.org/10.1109/ACCESS.2022.3156124

A. Ballaji, R. Dash, V. Subburaj, J. R. Kalvakurthi, D. Swain, and S. C. Swain, “Design & Development of MPPT Using PSO with Predefined Search Space Based on Fuzzy Fokker Planck Solution,” IEEE Access, vol. 10, pp. 80764–80783, 2022. https://doi.org/10.1109/ACCESS.2022.3195036

B. Ghania, O. Amar, and M. Hichem, “Etude and Optimization of MPPT Controllers in Photovoltaic Systems with Battery Energy Storage,” The Scientific Bulletin of Electrical Engineering Faculty, vol. 23, no. 2, pp. 12–19, Dec. 2023. https://doi.org/10.2478/sbeef-2023-0015

A. Aripriharta et al., “The Performance of a New Heuristic Approach for Tracking Maximum Power of PV Systems,” Applied Computational Intelligence and Soft Computing, vol. 2022, 2022. https://doi.org/10.1155/2022/1996410

G.-J. Jong, Aripriharta, Hendrick, and G.-J. Horng, “A novel queen honey bee migration (QHBM) algorithm for sink repositioning in wireless sensor network,” Wirel Pers Commun, vol. 95, pp. 3209–3232, 2017. https://doi.org/10.1007/s11277-017-3991-z

C. Liu and R. Cheung, “Advanced Algorithm for MPPT Control of Photovoltaic Systems.”

R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Hybrid, optimal, intelligent and classical PV MPPT techniques: A review,” Jan. 01, 2021, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.17775/CSEEJPES.2019.02720

M. J. Alshareef, “An Effective Falcon Optimization Algorithm Based MPPT Under Partial Shaded Photovoltaic Systems,” IEEE Access, vol. 10, pp. 131345–131360, 2022. https://doi.org/10.1109/ACCESS.2022.3226654

A. I. M. Ali et al., “An Enhanced P&O MPPT Algorithm with Concise Search Area for Grid-Tied PV Systems,” IEEE Access, vol. 11, pp. 79408–79421, 2023. https://doi.org/10.1109/ACCESS.2023.3298106

W. Jinpeng, Y. Qinxue, Z. Bo, Jeremy-Gillbanks, and Z. Xin, “Study on MPPT Algorithm Based on an Efficient Hybrid Conjugate Gradient Method in a Photovoltaic System,” IEEE Access, vol. 11, pp. 4219–4227, 2023. http://dx.doi.org/10.1109/ACCESS.2022.3233826

A. Aripriharta et al., “Comparison Of Queen Honey Bee Colony Migration With Various MPPTS on Photovoltaic System Under Shaded Conditions,” EUREKA, Physics and Engineering, vol. 2023, no. 4, pp. 52–62, Jul. 2023. http://dx.doi.org/10.1051/e3sconf/202447301003

Aripriharta et al., “Queen honey bee migration (QHBM) optimization for droop control on DC microgrid under load variation,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 15, no. 1, pp. 12–22, 2024. https://doi.org/10.55981/j.mev.2024.742

A. Aripriharta, M. Y. Fazi, M. C. Bagaskoro, and R. N. Nikmah, “Pengembangan Prototipe PLTPH Untuk Efisiensi Energi Penerangan Jalan Di Desa Ngisong Kota Batu,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 5, no. 2, pp. 321–330, 2024. https://doi.org/10.24036/jtein.v5i2.571

F. Wicaksono Yunianto Saputra et al., “CYCLOTRON : Jurnal Teknik Elektro Preliminary Analysis of DC Grid with Photovoltaic for Row House Considering Off-Grid and On-Grid Conditions,” 2025.

Aripriharta, A. Firly Aprilia Putri, S. Omar, and M. Wahyu Prasetyo, “Multiple Range of Output Converter for Hazard Sensors with PV System,” E3S Web of Conferences, vol. 473, p. 01003, Jan. 2024, https://doi.org/10.1051/e3sconf/202447301003

A. N. Handayani, F. A. Pusparani, D. Lestari, I. M. Wirawan, A. P. Wibawa, and O. Fukuda, “Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 765–779, 2023. https://doi.org/10.31763/ijrcs.v3i4.1147

S. Ahmad et al., “Direct Power Control Based on Point of Common Coupling Voltage Modulation for Grid-Tied AC Microgrid PV Inverter,” IEEE Access, vol. 10, pp. 109187–109202, 2022. https://doi.org/10.1109/ACCESS.2022.3213939

S. Adak, H. Cangi, B. Eid, and A. S. Yilmaz, “Developed analytical expression for current harmonic distortion of the PV system’s inverter in relation to the solar irradiance and temperature,” Electrical Engineering, vol. 103, no. 1, pp. 697–704, Feb. 2021. https://doi.org/10.1007/s00202-020-01110-7

S. Ahmad et al., “Fuzzy logic-based direct power control method for pv inverter of grid-tied ac microgrid without phase-locked loop,” Electronics (Switzerland), vol. 10, no. 24, Dec. 2021. https://doi.org/10.3390/electronics10243095

O. Abdel-Rahim and H. Wang, “A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems,” CPSS Transactions on Power Electronics and Applications, vol. 5, no. 2, pp. 191–200, Jun. 2020. http://dx.doi.org/10.24295/CPSSTPEA.2020.00016

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License