Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Nov 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Implementation of Convolutional Recurrent Neural Network for Vehicle Number Plate Identification in Raspberry Pi Based Parking System

https://doi.org/10.22219/kinetik.v10i4.2320
Rivaul Muzammil
Universitas Syiah Kuala
Maulisa Oktiana
Universitas Syiah Kuala
Roslidar Roslidar
Universitas Syiah Kuala

Corresponding Author(s) : Rivaul Muzammil

muzzammil.rm@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Nov 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The rapid growth of vehicles in Indonesia has created significant challenges in managing parking facilities. To address this issue, this study proposes an intelligent parking system based on automatic license plate character recognition. The system employs YOLOv8 (You Only Look Once) for license plate region detection and CRNN (Convolutional Recurrent Neural Network) for alphanumeric character recognition. Its architecture integrates a Raspberry Pi, camera module, and servo motor to enable automated license plate detection and recognition during vehicle entry and exit. YOLOv8 generates bounding boxes to isolate license plate regions, which are then processed as input for CRNN. The CRNN extracts visual features through convolutional layers and captures sequential relationships among characters using recurrent layers. The entire pipeline is deployed on Raspberry Pi with TensorFlow Lite to ensure efficient computation in resource-constrained environments. Experimental results demonstrate that YOLOv8 achieved a detection accuracy of 94.69%, with a precision of 98.32%, recall of 96.25%, and F1-score of 97.27%, while CRNN reached a character recognition accuracy of 93.8% across 30 license plates. Although some recognition errors occurred, such as misclassifying ‘G’ as ‘C’, 'W' as 'H', and 'Q' as 'O', the proposed system proved effective and feasible for embedded smart parking applications.

Keywords

Parking system License plate numbers Convolutional Recurrent Neural Network Raspberry Pi You Only Look Once v8
Muzammil, R., Oktiana, M. ., & Roslidar, R. (2025). Implementation of Convolutional Recurrent Neural Network for Vehicle Number Plate Identification in Raspberry Pi Based Parking System. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2320
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. B. P. Statistik, “Perkembangan Jumlah Kendaraan Bermotor.”.
  2. R. Kanan and H. Arbess, “An IoT-Based Intelligent System for Real-Time Parking Monitoring and Automatic Billing,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 622–626, 2020. https://doi.org/10.1109/ICIoT48696.2020.9089589
  3. M. M. Abdellatif, N. H. Elshabasy, A. E. Elashmawy, and M. AbdelRaheem, “A low cost IoT-based Arabic license plate recognition model for smart parking systems,” Ain Shams Eng. J., vol. 14, no. 6, p. 102178, 2023. https://doi.org/10.1016/j.asej.2023.102178
  4. Y. Elhadi, O. Abdalshakour, and S. Babiker, “Arabic-numbers recognition system for car plates,” Proc. Int. Conf. Comput. Control. Electr. Electron. Eng. 2019, ICCCEEE 2019, no. September 2019, 2019. https://doi.org/10.1109/ICCCEEE46830.2019.9071288
  5. P. Choorat, C. Sirikornkarn, and T. Pramoun, “License Plate Detection and Integral Intensity Projection for Automatic Finding the Vacant of Car Parking Space,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 4–7, 2019. https://doi.org/10.1109/ITC-CSCC.2019.8793297
  6. W. Sugeng and R. Husaini, “Implementasi Convolutional Recurrent Neural Network untuk Identifikasi Plat Nomor Mobil pada Sistem Parkir Otomatis,” MIND (Multimedia Artif. Intell. Netw. Database) J., vol. 8, no. 2, pp. 142–157, 2023. https://doi.org/10.26760/mindjournal.v8i2.142-157
  7. A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate from Still Images,” 2018 Int. Conf. Circuits Syst. Digit. Enterp. Technol. ICCSDET 2018, pp. 1–5, 2018. https://doi.org/10.1109/ICCSDET.2018.8821138
  8. Y. M. Alwaqfi and M. Mohamad, “A review of Arabic optical character recognition techniques & performance,” Int. J. Eng. Trends Technol., no. 1, pp. 44–51, 2020. https://doi.org/10.14445/22315381/CATI1P208
  9. G. Sharma, “Performance Analysis of Vehicle Number Plate Recognition System Using Template Matching Techniques,” J. Inf. Technol. Softw. Eng., vol. 08, no. 02, 2018. https://doi.org/10.4172/2165-7866.1000232
  10. G. Hajare, U. Kharche, P. Mahajan, and A. Shinde, “Automatic Number Plate Recognition System for Indian Number Plates using Machine Learning Techniques,” ITM Web Conf., vol. 44, p. 03044, 2022. https://doi.org/10.1051/itmconf/20224403044
  11. A. S., J. Yankey, and E. O., “An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43, pp. 1–5, 2018. https://doi.org/10.5120/ijca2018917150
  12. F. N. M. Ariff, A. S. A. Nasir, H. Jaafar, and A. Zulkifli, “Sauvola and Niblack Techniques Analysis for Segmentation of Vehicle License Plate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020. https://doi.org/10.1088/1757-899X/864/1/012136
  13. M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7, 2023. https://doi.org/10.3390/machines11070677
  14. M. Talib, A. H. Y. Al-Noori, and J. Suad, “YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection,” Karbala Int. J. Mod. Sci., vol. 10, no. 1, pp. 56–68, 2024. https://doi.org/10.33640/2405-609X.3339
  15. M. Q. Yao Guangzhen, Sandong Zhu, Long Zhang, “HP-YOLOv8 : High-Precision Small Object Detection Algorithm For remote sensing Images,” Sensors, no, pp. 1–23, 2024. https://doi.org/https://doi.org/10.3390/s24154858
  16. H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electron., vol. 12, no. 10, pp. 1–14, 2023. https://doi.org/10.3390/electronics12102323
  17. T. M. Al-Hasan, V. Bonnefille, and F. Bensaali, “Enhanced YOLOv8-Based System for Automatic Number Plate Recognition,” Technologies, vol. 12, no. 9, pp. 1–26, 2024. https://doi.org/10.3390/technologies12090164
  18. Z. Hu, Y. Hu, J. Liu, B. Wu, D. Han, and T. Kurfess, “A CRNN module for hand pose estimation,” Neurocomputing, vol. 333, pp. 157–168, 2019. https://doi.org/10.1016/j.neucom.2018.12.065
  19. A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022. https://doi.org/10.1016/j.jksuci.2022.02.025
  20. X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap., pp. 2428–2437, 2016.
  21. A. H. Wenhua Yu, Mayire Ibrayim, “Scene Text Recognition Based on Improved CRNN,” Information, no, pp. 1–14, 2023. https://doi.org/10.3390/info14070369
  22. Y. Liu, Y. Wang, and H. Shi, “A Convolutional Recurrent Neural-Network-Based Machine Learning for Scene Text Recognition Application,” Symmetry (Basel)., vol. 15, no. 4, 2023. https://doi.org/10.3390/sym15040849
  23. B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp. 2298–2304, 2017. https://doi.org/10.1109/TPAMI.2016.2646371
  24. S. Küçükdermenci, “Raspberry Pi-Based Real-time Parking Monitoring with Mobile App Integration,” 5th Int. Conf. Eng. Appl. Nat. Sci. August 25-26, 2024 Konya, Turkey, 2024.
  25. P. Devi, T. Sharanmai, and T. Chandrika, “IoT Based Smart Vehicle Parking and Automatic Billing System Using RFID,” J. Eng. Sci., vol. 14, no. 04, pp. 922–934, 2023.
  26. W. A. Jabbar, C. W. Wei, N. Atiqah, and A. M. Azmi, “Internet of Things An IoT Raspberry Pi-based parking management system for smart campus,” Fac. Electr. Electron. Eng. Technol. Univ. Malaysia Pahang, 26600 Pekan, Pahang, Malaysia, p. 100387, 2021. https://doi.org/10.1016/j.iot.2021.100387
  27. A. O. Agbeyangi, O. A. Alashiri, and A. E. Otunuga, “Automatic Identification of Vehicle Plate Number using Raspberry Pi,” 2020 Int. Conf. Math. Comput. Eng. Comput. Sci. ICMCECS 2020, pp. 1–4, 2020. https://doi.org/10.1109/ICMCECS47690.2020.246983
  28. B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “ASTER: An Attentional Scene Text Recognizer with Flexible Rectification,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–14, 2018. https://doi.org/10.1109/TPAMI.2018.2848939
  29. Roboflow, “License Plate Recognition Computer Vision Project,”.
  30. Kaggle, “Indonesian Plate Number,”.
  31. Roboflow, “Plat Nomor Image Dataset,”.
Read More

References


B. P. Statistik, “Perkembangan Jumlah Kendaraan Bermotor.”.

R. Kanan and H. Arbess, “An IoT-Based Intelligent System for Real-Time Parking Monitoring and Automatic Billing,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 622–626, 2020. https://doi.org/10.1109/ICIoT48696.2020.9089589

M. M. Abdellatif, N. H. Elshabasy, A. E. Elashmawy, and M. AbdelRaheem, “A low cost IoT-based Arabic license plate recognition model for smart parking systems,” Ain Shams Eng. J., vol. 14, no. 6, p. 102178, 2023. https://doi.org/10.1016/j.asej.2023.102178

Y. Elhadi, O. Abdalshakour, and S. Babiker, “Arabic-numbers recognition system for car plates,” Proc. Int. Conf. Comput. Control. Electr. Electron. Eng. 2019, ICCCEEE 2019, no. September 2019, 2019. https://doi.org/10.1109/ICCCEEE46830.2019.9071288

P. Choorat, C. Sirikornkarn, and T. Pramoun, “License Plate Detection and Integral Intensity Projection for Automatic Finding the Vacant of Car Parking Space,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 4–7, 2019. https://doi.org/10.1109/ITC-CSCC.2019.8793297

W. Sugeng and R. Husaini, “Implementasi Convolutional Recurrent Neural Network untuk Identifikasi Plat Nomor Mobil pada Sistem Parkir Otomatis,” MIND (Multimedia Artif. Intell. Netw. Database) J., vol. 8, no. 2, pp. 142–157, 2023. https://doi.org/10.26760/mindjournal.v8i2.142-157

A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate from Still Images,” 2018 Int. Conf. Circuits Syst. Digit. Enterp. Technol. ICCSDET 2018, pp. 1–5, 2018. https://doi.org/10.1109/ICCSDET.2018.8821138

Y. M. Alwaqfi and M. Mohamad, “A review of Arabic optical character recognition techniques & performance,” Int. J. Eng. Trends Technol., no. 1, pp. 44–51, 2020. https://doi.org/10.14445/22315381/CATI1P208

G. Sharma, “Performance Analysis of Vehicle Number Plate Recognition System Using Template Matching Techniques,” J. Inf. Technol. Softw. Eng., vol. 08, no. 02, 2018. https://doi.org/10.4172/2165-7866.1000232

G. Hajare, U. Kharche, P. Mahajan, and A. Shinde, “Automatic Number Plate Recognition System for Indian Number Plates using Machine Learning Techniques,” ITM Web Conf., vol. 44, p. 03044, 2022. https://doi.org/10.1051/itmconf/20224403044

A. S., J. Yankey, and E. O., “An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43, pp. 1–5, 2018. https://doi.org/10.5120/ijca2018917150

F. N. M. Ariff, A. S. A. Nasir, H. Jaafar, and A. Zulkifli, “Sauvola and Niblack Techniques Analysis for Segmentation of Vehicle License Plate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020. https://doi.org/10.1088/1757-899X/864/1/012136

M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7, 2023. https://doi.org/10.3390/machines11070677

M. Talib, A. H. Y. Al-Noori, and J. Suad, “YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection,” Karbala Int. J. Mod. Sci., vol. 10, no. 1, pp. 56–68, 2024. https://doi.org/10.33640/2405-609X.3339

M. Q. Yao Guangzhen, Sandong Zhu, Long Zhang, “HP-YOLOv8 : High-Precision Small Object Detection Algorithm For remote sensing Images,” Sensors, no, pp. 1–23, 2024. https://doi.org/https://doi.org/10.3390/s24154858

H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electron., vol. 12, no. 10, pp. 1–14, 2023. https://doi.org/10.3390/electronics12102323

T. M. Al-Hasan, V. Bonnefille, and F. Bensaali, “Enhanced YOLOv8-Based System for Automatic Number Plate Recognition,” Technologies, vol. 12, no. 9, pp. 1–26, 2024. https://doi.org/10.3390/technologies12090164

Z. Hu, Y. Hu, J. Liu, B. Wu, D. Han, and T. Kurfess, “A CRNN module for hand pose estimation,” Neurocomputing, vol. 333, pp. 157–168, 2019. https://doi.org/10.1016/j.neucom.2018.12.065

A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022. https://doi.org/10.1016/j.jksuci.2022.02.025

X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap., pp. 2428–2437, 2016.

A. H. Wenhua Yu, Mayire Ibrayim, “Scene Text Recognition Based on Improved CRNN,” Information, no, pp. 1–14, 2023. https://doi.org/10.3390/info14070369

Y. Liu, Y. Wang, and H. Shi, “A Convolutional Recurrent Neural-Network-Based Machine Learning for Scene Text Recognition Application,” Symmetry (Basel)., vol. 15, no. 4, 2023. https://doi.org/10.3390/sym15040849

B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp. 2298–2304, 2017. https://doi.org/10.1109/TPAMI.2016.2646371

S. Küçükdermenci, “Raspberry Pi-Based Real-time Parking Monitoring with Mobile App Integration,” 5th Int. Conf. Eng. Appl. Nat. Sci. August 25-26, 2024 Konya, Turkey, 2024.

P. Devi, T. Sharanmai, and T. Chandrika, “IoT Based Smart Vehicle Parking and Automatic Billing System Using RFID,” J. Eng. Sci., vol. 14, no. 04, pp. 922–934, 2023.

W. A. Jabbar, C. W. Wei, N. Atiqah, and A. M. Azmi, “Internet of Things An IoT Raspberry Pi-based parking management system for smart campus,” Fac. Electr. Electron. Eng. Technol. Univ. Malaysia Pahang, 26600 Pekan, Pahang, Malaysia, p. 100387, 2021. https://doi.org/10.1016/j.iot.2021.100387

A. O. Agbeyangi, O. A. Alashiri, and A. E. Otunuga, “Automatic Identification of Vehicle Plate Number using Raspberry Pi,” 2020 Int. Conf. Math. Comput. Eng. Comput. Sci. ICMCECS 2020, pp. 1–4, 2020. https://doi.org/10.1109/ICMCECS47690.2020.246983

B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “ASTER: An Attentional Scene Text Recognizer with Flexible Rectification,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–14, 2018. https://doi.org/10.1109/TPAMI.2018.2848939

Roboflow, “License Plate Recognition Computer Vision Project,”.

Kaggle, “Indonesian Plate Number,”.

Roboflow, “Plat Nomor Image Dataset,”.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License