Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025 (Article in Progress)
  4. Articles

Issue

Vol. 10, No. 4, November 2025 (Article in Progress)

Issue Published : Oct 16, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Implementation of Convolutional Recurrent Neural Network for Vehicle Number Plate Identification in Raspberry Pi Based Parking System

https://doi.org/10.22219/kinetik.v10i4.2320
Rivaul Muzammil
Universitas Syiah Kuala
Maulisa Oktiana
Universitas Syiah Kuala
Roslidar
Universitas Syiah Kuala

Corresponding Author(s) : Rivaul Muzammil

muzzammil.rm@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025 (Article in Progress)
Article Published : Oct 19, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The increasing number of vehicles in Indonesia has posed significant challenges in the management of parking facilities. This study proposes the development and implementation of an intelligent parking system based on automatic vehicle license plate character recognition. The proposed system employs the You Only Look Once version 8 (YOLOv8) model to detect the license plate region, and a Convolutional Recurrent Neural Network (CRNN) to recognize the alphanumeric characters contained within the plate. The system architecture integrates a Raspberry Pi, a camera module, and a servo motor to facilitate the automatic detection and recognition of license plates as vehicles enter and exit parking areas. The YOLOv8 model is responsible for identifying the license plate region by generating a bounding box through a convolutional layer, which is then used to isolate the license plate area from the original image. This cropped image undergoes a pre-processing stage to conform with the input specifications of the CRNN model. Subsequently, the CRNN model extracts visual features through convolutional layers and leverages recurrent layers to capture the sequential relationship among the characters on the license plate. The entire processing pipeline is deployed on the Raspberry Pi using TensorFlow Lite, ensuring efficient operation of both the YOLOv8 and CRNN models in a resource-constrained environment. Experimental results demonstrate that the YOLOv8 model achieved a detection accuracy of 94.69% for license plate localization, with a precision of 98.32%, recall of 96.25%, and an F1-score of 97.27%. In parallel, the CRNN model attained a character recognition accuracy of 93.8% across a test set comprising 30 license plates. Nevertheless, the system encountered some recognition errors, such as misclassification of the character 'G' as 'C', 'W' as 'H', and 'Q' as 'O'.

Keywords

Parking system License plate numbers You Only Look Once Convolutional Recurrent Neural Network Raspberry Pi
Muzammil, R., Oktiana, M. ., & Roslidar. (2025). Implementation of Convolutional Recurrent Neural Network for Vehicle Number Plate Identification in Raspberry Pi Based Parking System. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2320
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. B. P. Statistik, “Perkembangan Jumlah Kendaraan Bermotor,” [Online] https://www.bps.go.id/id/statistics table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html.
  2. R. Kanan and H. Arbess, “An IoT-Based Intelligent System for Real-Time Parking Monitoring and Automatic Billing,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 622–626, 2020, doi: 10.1109/ICIoT48696.2020.9089589.
  3. M. M. Abdellatif, N. H. Elshabasy, A. E. Elashmawy, and M. AbdelRaheem, “A low cost IoT-based Arabic license plate recognition model for smart parking systems,” Ain Shams Eng. J., vol. 14, no. 6, p. 102178, 2023, doi: 10.1016/j.asej.2023.102178.
  4. Y. Elhadi, O. Abdalshakour, and S. Babiker, “Arabic-numbers recognition system for car plates,” Proc. Int. Conf. Comput. Control. Electr. Electron. Eng. 2019, ICCCEEE 2019, no. September 2019, 2019, doi: 10.1109/ICCCEEE46830.2019.9071288.
  5. P. Choorat, C. Sirikornkarn, and T. Pramoun, “License Plate Detection and Integral Intensity Projection for Automatic Finding the Vacant of Car Parking Space,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 4–7, 2019, doi: 10.1109/ITC-CSCC.2019.8793297.
  6. W. Sugeng and R. Husaini, “Implementasi Convolutional Recurrent Neural Network untuk Identifikasi Plat Nomor Mobil pada Sistem Parkir Otomatis,” MIND (Multimedia Artif. Intell. Netw. Database) J., vol. 8, no. 2, pp. 142–157, 2023, doi: https://doi.org/10.26760/mindjournal.v8i2.142-157.
  7. A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate from Still Images,” 2018 Int. Conf. Circuits Syst. Digit. Enterp. Technol. ICCSDET 2018, pp. 1–5, 2018, doi: 10.1109/ICCSDET.2018.8821138.
  8. Y. M. Alwaqfi and M. Mohamad, “A review of Arabic optical character recognition techniques & performance,” Int. J. Eng. Trends Technol., no. 1, pp. 44–51, 2020, doi: 10.14445/22315381/CATI1P208.
  9. G. Sharma, “Performance Analysis of Vehicle Number Plate Recognition System Using Template Matching Techniques,” J. Inf. Technol. Softw. Eng., vol. 08, no. 02, 2018, doi: 10.4172/2165-7866.1000232.
  10. G. Hajare, U. Kharche, P. Mahajan, and A. Shinde, “Automatic Number Plate Recognition System for Indian Number Plates using Machine Learning Techniques,” ITM Web Conf., vol. 44, p. 03044, 2022, doi: 10.1051/itmconf/20224403044.
  11. A. S., J. Yankey, and E. O., “An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43, pp. 1–5, 2018, doi: 10.5120/ijca2018917150.
  12. F. N. M. Ariff, A. S. A. Nasir, H. Jaafar, and A. Zulkifli, “Sauvola and Niblack Techniques Analysis for Segmentation of Vehicle License Plate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020, doi: 10.1088/1757-899X/864/1/012136.
  13. M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7, 2023, doi: 10.3390/machines11070677.
  14. M. Talib, A. H. Y. Al-Noori, and J. Suad, “YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection,” Karbala Int. J. Mod. Sci., vol. 10, no. 1, pp. 56–68, 2024, doi: 10.33640/2405-609X.3339.
  15. M. Q. Yao Guangzhen, Sandong Zhu, Long Zhang, “HP-YOLOv8 : High-Precision Small Object Detection Algorithm For remote sensing Images,” Sensors, no. https://doi.org/10.3390/s24154858, pp. 1–23, 2024.
  16. H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electron., vol. 12, no. 10, pp. 1–14, 2023, doi: 10.3390/electronics12102323.
  17. T. M. Al-Hasan, V. Bonnefille, and F. Bensaali, “Enhanced YOLOv8-Based System for Automatic Number Plate Recognition,” Technologies, vol. 12, no. 9, pp. 1–26, 2024, doi: 10.3390/technologies12090164.
  18. Z. Hu, Y. Hu, J. Liu, B. Wu, D. Han, and T. Kurfess, “A CRNN module for hand pose estimation,” Neurocomputing, vol. 333, pp. 157–168, 2019, doi: 10.1016/j.neucom.2018.12.065.
  19. A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022, doi: 10.1016/j.jksuci.2022.02.025.
  20. X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap., pp. 2428–2437, 2016.
  21. A. H. Wenhua Yu, Mayire Ibrayim, “Scene Text Recognition Based on Improved CRNN,” Information, no. https://doi.org/10.3390/info14070369, pp. 1–14, 2023.
  22. Y. Liu, Y. Wang, and H. Shi, “A Convolutional Recurrent Neural-Network-Based Machine Learning for Scene Text Recognition Application,” Symmetry (Basel)., vol. 15, no. 4, 2023, doi: 10.3390/sym15040849.
  23. B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp. 2298–2304, 2017, doi: 10.1109/TPAMI.2016.2646371.
  24. S. Küçükdermenci, “Raspberry Pi-Based Real-time Parking Monitoring with Mobile App Integration,” 5th Int. Conf. Eng. Appl. Nat. Sci. August 25-26, 2024 Konya, Turkey, 2024.
  25. P. Devi, T. Sharanmai, and T. Chandrika, “Iot Based Smart Vehicle Parking and Automatic Billing System Using Rfid,” J. Eng. Sci., vol. 14, no. 04, pp. 922–934, 2023.
  26. W. A. Jabbar, C. W. Wei, N. Atiqah, and A. M. Azmi, “Internet of Things An IoT Raspberry Pi-based parking management system for smart campus,” Fac. Electr. Electron. Eng. Technol. Univ. Malaysia Pahang, 26600 Pekan, Pahang, Malaysia, p. 100387, 2021, [Online]. Available: https://doi.org/10.1016/j.iot.2021.100387
  27. A. O. Agbeyangi, O. A. Alashiri, and A. E. Otunuga, “Automatic Identification of Vehicle Plate Number using Raspberry Pi,” 2020 Int. Conf. Math. Comput. Eng. Comput. Sci. ICMCECS 2020, pp. 1–4, 2020, doi: 10.1109/ICMCECS47690.2020.246983.
  28. B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “ASTER: An Attentional Scene Text Recognizer with Flexible Rectification,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–14, 2018, doi: 10.1109/TPAMI.2018.2848939.
  29. Roboflow, “License Plate Recognition Computer Vision Project,” [Online] https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e.
  30. Kaggle, “Indonesian Plate Number,” [Online] https://www.kaggle.com/datasets/imamdigmi/indonesian-plate-number.
  31. Roboflow, “Plat Nomor Image Dataset,” [Online] https://universe.roboflow.com/platnomor-57f8z/platnomor-u1vjp/dataset/1/images.
Read More

References


B. P. Statistik, “Perkembangan Jumlah Kendaraan Bermotor,” [Online] https://www.bps.go.id/id/statistics table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html.

R. Kanan and H. Arbess, “An IoT-Based Intelligent System for Real-Time Parking Monitoring and Automatic Billing,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling Technol. ICIoT 2020, pp. 622–626, 2020, doi: 10.1109/ICIoT48696.2020.9089589.

M. M. Abdellatif, N. H. Elshabasy, A. E. Elashmawy, and M. AbdelRaheem, “A low cost IoT-based Arabic license plate recognition model for smart parking systems,” Ain Shams Eng. J., vol. 14, no. 6, p. 102178, 2023, doi: 10.1016/j.asej.2023.102178.

Y. Elhadi, O. Abdalshakour, and S. Babiker, “Arabic-numbers recognition system for car plates,” Proc. Int. Conf. Comput. Control. Electr. Electron. Eng. 2019, ICCCEEE 2019, no. September 2019, 2019, doi: 10.1109/ICCCEEE46830.2019.9071288.

P. Choorat, C. Sirikornkarn, and T. Pramoun, “License Plate Detection and Integral Intensity Projection for Automatic Finding the Vacant of Car Parking Space,” 34th Int. Tech. Conf. Circuits/Systems, Comput. Commun. ITC-CSCC 2019, pp. 4–7, 2019, doi: 10.1109/ITC-CSCC.2019.8793297.

W. Sugeng and R. Husaini, “Implementasi Convolutional Recurrent Neural Network untuk Identifikasi Plat Nomor Mobil pada Sistem Parkir Otomatis,” MIND (Multimedia Artif. Intell. Netw. Database) J., vol. 8, no. 2, pp. 142–157, 2023, doi: https://doi.org/10.26760/mindjournal.v8i2.142-157.

A. Menon and B. Omman, “Detection and Recognition of Multiple License Plate from Still Images,” 2018 Int. Conf. Circuits Syst. Digit. Enterp. Technol. ICCSDET 2018, pp. 1–5, 2018, doi: 10.1109/ICCSDET.2018.8821138.

Y. M. Alwaqfi and M. Mohamad, “A review of Arabic optical character recognition techniques & performance,” Int. J. Eng. Trends Technol., no. 1, pp. 44–51, 2020, doi: 10.14445/22315381/CATI1P208.

G. Sharma, “Performance Analysis of Vehicle Number Plate Recognition System Using Template Matching Techniques,” J. Inf. Technol. Softw. Eng., vol. 08, no. 02, 2018, doi: 10.4172/2165-7866.1000232.

G. Hajare, U. Kharche, P. Mahajan, and A. Shinde, “Automatic Number Plate Recognition System for Indian Number Plates using Machine Learning Techniques,” ITM Web Conf., vol. 44, p. 03044, 2022, doi: 10.1051/itmconf/20224403044.

A. S., J. Yankey, and E. O., “An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine,” Int. J. Comput. Appl., vol. 180, no. 43, pp. 1–5, 2018, doi: 10.5120/ijca2018917150.

F. N. M. Ariff, A. S. A. Nasir, H. Jaafar, and A. Zulkifli, “Sauvola and Niblack Techniques Analysis for Segmentation of Vehicle License Plate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020, doi: 10.1088/1757-899X/864/1/012136.

M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7, 2023, doi: 10.3390/machines11070677.

M. Talib, A. H. Y. Al-Noori, and J. Suad, “YOLOv8-CAB: Improved YOLOv8 for Real-time Object Detection,” Karbala Int. J. Mod. Sci., vol. 10, no. 1, pp. 56–68, 2024, doi: 10.33640/2405-609X.3339.

M. Q. Yao Guangzhen, Sandong Zhu, Long Zhang, “HP-YOLOv8 : High-Precision Small Object Detection Algorithm For remote sensing Images,” Sensors, no. https://doi.org/10.3390/s24154858, pp. 1–23, 2024.

H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electron., vol. 12, no. 10, pp. 1–14, 2023, doi: 10.3390/electronics12102323.

T. M. Al-Hasan, V. Bonnefille, and F. Bensaali, “Enhanced YOLOv8-Based System for Automatic Number Plate Recognition,” Technologies, vol. 12, no. 9, pp. 1–26, 2024, doi: 10.3390/technologies12090164.

Z. Hu, Y. Hu, J. Liu, B. Wu, D. Han, and T. Kurfess, “A CRNN module for hand pose estimation,” Neurocomputing, vol. 333, pp. 157–168, 2019, doi: 10.1016/j.neucom.2018.12.065.

A. Onan, “Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 5, pp. 2098–2117, 2022, doi: 10.1016/j.jksuci.2022.02.025.

X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and recurrent neural network for sentiment analysis of short texts,” COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap., pp. 2428–2437, 2016.

A. H. Wenhua Yu, Mayire Ibrayim, “Scene Text Recognition Based on Improved CRNN,” Information, no. https://doi.org/10.3390/info14070369, pp. 1–14, 2023.

Y. Liu, Y. Wang, and H. Shi, “A Convolutional Recurrent Neural-Network-Based Machine Learning for Scene Text Recognition Application,” Symmetry (Basel)., vol. 15, no. 4, 2023, doi: 10.3390/sym15040849.

B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp. 2298–2304, 2017, doi: 10.1109/TPAMI.2016.2646371.

S. Küçükdermenci, “Raspberry Pi-Based Real-time Parking Monitoring with Mobile App Integration,” 5th Int. Conf. Eng. Appl. Nat. Sci. August 25-26, 2024 Konya, Turkey, 2024.

P. Devi, T. Sharanmai, and T. Chandrika, “Iot Based Smart Vehicle Parking and Automatic Billing System Using Rfid,” J. Eng. Sci., vol. 14, no. 04, pp. 922–934, 2023.

W. A. Jabbar, C. W. Wei, N. Atiqah, and A. M. Azmi, “Internet of Things An IoT Raspberry Pi-based parking management system for smart campus,” Fac. Electr. Electron. Eng. Technol. Univ. Malaysia Pahang, 26600 Pekan, Pahang, Malaysia, p. 100387, 2021, [Online]. Available: https://doi.org/10.1016/j.iot.2021.100387

A. O. Agbeyangi, O. A. Alashiri, and A. E. Otunuga, “Automatic Identification of Vehicle Plate Number using Raspberry Pi,” 2020 Int. Conf. Math. Comput. Eng. Comput. Sci. ICMCECS 2020, pp. 1–4, 2020, doi: 10.1109/ICMCECS47690.2020.246983.

B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “ASTER: An Attentional Scene Text Recognizer with Flexible Rectification,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–14, 2018, doi: 10.1109/TPAMI.2018.2848939.

Roboflow, “License Plate Recognition Computer Vision Project,” [Online] https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e.

Kaggle, “Indonesian Plate Number,” [Online] https://www.kaggle.com/datasets/imamdigmi/indonesian-plate-number.

Roboflow, “Plat Nomor Image Dataset,” [Online] https://universe.roboflow.com/platnomor-57f8z/platnomor-u1vjp/dataset/1/images.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License