
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Transfer Learning Approaches for Non-Organic Waste Classification: Experiments with MobileNet and VGG-16
Corresponding Author(s) : Zamah Sari
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 4, November 2025
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. N. Nawar, T. Mahbub, R. A. Tashfiq, and T. U. Rashid, “Municipal Solid Waste Collection, Transportation, and Segregation,” in Environmental Engineering and Waste Management: Recent Trends and Perspectives, V. Kumar, S. A. Bhat, S. Kumar, and P. Verma, Eds., Cham: Springer Nature Switzerland, 2024, pp. 29–71. doi: 10.1007/978-3-031-58441-1_2.
- E. A. Wikurendra, A. Csonka, I. Nagy, and G. Nurika, “Urbanization and Benefit of Integration Circular Economy into Waste Management in Indonesia: A Review,” Circular Economy and Sustainability, vol. 4, no. 2, pp. 1219–1248, 2024, doi: 10.1007/s43615-024-00346-w.
- K. M and S. SK, “Plasma Technology: An Ultimate Solution for Solid Waste Management,” Open Access Journal of Waste Management & Xenobiotics, vol. 4, no. 2, pp. 1–6, 2021, doi: 10.23880/oajwx-16000159.
- M. Mousavi, E. Kowsari, M. Gheibi, Z. A. Cheshmeh, T. Teymoorian, and S. Ramakrishna, “Assessing Bioplastics’ Economic, Commercial, Political, and Energy Potential with Circular Economy Modeling: a Sustainable Solution to Plastic Waste Management,” Materials Circular Economy, vol. 6, pp. 1–36, 2024, [Online]. Available: https://api.semanticscholar.org/CorpusID:267700929
- N. Yoezer, D. B. Gurung, K. Wangchuk, and Nat. Env. Poll. Tech., “Environmental Toxicity, Human Hazards and Bacterial Degradation of Polyethylene,” Nature Environment and Pollution Technology, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:261537854
- D. Kumar and Dr. P. Bansal, “Different Method of Plastic Waste Management in the Light of Ecosystem Balance: A Review,” International Journal of Advanced Research in Science, Communication and Technology, 2024, [Online]. Available: https://api.semanticscholar.org/CorpusID:269972300
- N. Taghavi, I. A. Udugama, W.-Q. Zhuang, and S. Baroutian, “Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness,” Biotechnol Adv, vol. 49, p. 107731, 2021, doi: https://doi.org/10.1016/j.biotechadv.2021.107731.
- G. Liu, “Non-Biodegradable Substances and Their Environmental Impact: A Study on Recycling As a Sustainable Solution,” 2024, doi: 10.4172/2155-6199.1000613.
- UN Environment Program and Solid Waste Association, “Beyond an age of waste Turning rubbish into a resource,” Feb. 2024. [Online]. Available: https://wedocs.unep.org/20.500.11822/44939
- S. Poudel and P. Poudyal, “Classification of Waste Materials using CNN Based on Transfer Learning,” in Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation, in FIRE ’22. New York, NY, USA: Association for Computing Machinery, 2023, pp. 29–33. doi: 10.1145/3574318.3574345.
- J. V Perez et al., “Implementation of Convolutional Neural Network of Non-Biodegradable Garbage Classifier and Segregator Based on VGG16 Architecture,” in TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), 2023, pp. 501–506. doi: 10.1109/TENCON58879.2023.10322380.
- M. I. B. Ahmed et al., “Deep Learning Approach to Recyclable Products Classification: Towards Sustainable Waste Management,” Sustainability (Switzerland), vol. 15, no. 14, Jul. 2023, doi: 10.3390/su151411138.
- H. Younis and M. Obaid, “Performance Comparison of Pretrained Deep Learning Models for Landfill Waste Classification,” 2024. [Online]. Available: www.ijacsa.thesai.org
- M. M. Hossen et al., “A Reliable and Robust Deep Learning Model for Effective Recyclable Waste Classification,” IEEE Access, vol. 12, pp. 13809–13821, 2024, doi: 10.1109/ACCESS.2024.3354774.
- C. Sirawattananon, N. Muangnak, and W. Pukdee, “Designing of IoT-based Smart Waste Sorting System with Image-based Deep Learning Applications,” in 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2021, pp. 383–387. doi: 10.1109/ECTI-CON51831.2021.9454826.
- M. Koskinopoulou, F. Raptopoulos, G. Papadopoulos, N. Mavrakis, and M. Maniadakis, “Robotic Waste Sorting Technology: Toward a Vision-Based Categorization System for the Industrial Robotic Separation of Recyclable Waste,” IEEE Robot Autom Mag, vol. 28, no. 2, pp. 50–60, 2021, doi: 10.1109/MRA.2021.3066040.
- S. Thokrairak, K. Thibuy, and P. Jitngernmadan, “Valuable Waste Classification Modeling based on SSD-MobileNet,” in 2020 - 5th International Conference on Information Technology (InCIT), 2020, pp. 228–232. doi: 10.1109/InCIT50588.2020.9310928.
- Sri Kruthika M, Rajadevi R, Sathya D, Varshini Shilin S, Sowbharanika Janani JS, and Suresh Babu K, “Garbage Classification: A Deep Learning Perspective,” International Research Journal on Advanced Engineering Hub (IRJAEH), vol. 2, no. 12, pp. 2774–2780, Dec. 2024, doi: 10.47392/IRJAEH.2024.0384.
- N. Hayatin, B. Mavindo, and E. B. Cahyono, “The Development of Mobile Application Based Customer Service System in Bank Sampah Malang,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 291–298, Sep. 2017, doi: 10.22219/kinetik.v2i4.266.
- A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861, Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861
- K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in Very Deep Convolutional Networks for Large-Scale Image Recognition, San Diego, May 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
- D. Qin et al., “MobileNetV4: Universal Models for the Mobile Ecosystem,” in Computer Vision – ECCV 2024, A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds., Cham: Springer Nature Switzerland, 2025, pp. 78–96.
- A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314–1324. doi: 10.1109/ICCV.2019.00140.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.
- V. Jayaswal, S. Ji, Satyankar, V. Singh, Y. Singh, and V. Tiwari, “Image Captioning Using VGG-16 Deep Learning Model,” in 2024 2nd International Conference on Disruptive Technologies (ICDT), 2024, pp. 1428–1433. doi: 10.1109/ICDT61202.2024.10489470.
References
K. N. Nawar, T. Mahbub, R. A. Tashfiq, and T. U. Rashid, “Municipal Solid Waste Collection, Transportation, and Segregation,” in Environmental Engineering and Waste Management: Recent Trends and Perspectives, V. Kumar, S. A. Bhat, S. Kumar, and P. Verma, Eds., Cham: Springer Nature Switzerland, 2024, pp. 29–71. doi: 10.1007/978-3-031-58441-1_2.
E. A. Wikurendra, A. Csonka, I. Nagy, and G. Nurika, “Urbanization and Benefit of Integration Circular Economy into Waste Management in Indonesia: A Review,” Circular Economy and Sustainability, vol. 4, no. 2, pp. 1219–1248, 2024, doi: 10.1007/s43615-024-00346-w.
K. M and S. SK, “Plasma Technology: An Ultimate Solution for Solid Waste Management,” Open Access Journal of Waste Management & Xenobiotics, vol. 4, no. 2, pp. 1–6, 2021, doi: 10.23880/oajwx-16000159.
M. Mousavi, E. Kowsari, M. Gheibi, Z. A. Cheshmeh, T. Teymoorian, and S. Ramakrishna, “Assessing Bioplastics’ Economic, Commercial, Political, and Energy Potential with Circular Economy Modeling: a Sustainable Solution to Plastic Waste Management,” Materials Circular Economy, vol. 6, pp. 1–36, 2024, [Online]. Available: https://api.semanticscholar.org/CorpusID:267700929
N. Yoezer, D. B. Gurung, K. Wangchuk, and Nat. Env. Poll. Tech., “Environmental Toxicity, Human Hazards and Bacterial Degradation of Polyethylene,” Nature Environment and Pollution Technology, 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:261537854
D. Kumar and Dr. P. Bansal, “Different Method of Plastic Waste Management in the Light of Ecosystem Balance: A Review,” International Journal of Advanced Research in Science, Communication and Technology, 2024, [Online]. Available: https://api.semanticscholar.org/CorpusID:269972300
N. Taghavi, I. A. Udugama, W.-Q. Zhuang, and S. Baroutian, “Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness,” Biotechnol Adv, vol. 49, p. 107731, 2021, doi: https://doi.org/10.1016/j.biotechadv.2021.107731.
G. Liu, “Non-Biodegradable Substances and Their Environmental Impact: A Study on Recycling As a Sustainable Solution,” 2024, doi: 10.4172/2155-6199.1000613.
UN Environment Program and Solid Waste Association, “Beyond an age of waste Turning rubbish into a resource,” Feb. 2024. [Online]. Available: https://wedocs.unep.org/20.500.11822/44939
S. Poudel and P. Poudyal, “Classification of Waste Materials using CNN Based on Transfer Learning,” in Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation, in FIRE ’22. New York, NY, USA: Association for Computing Machinery, 2023, pp. 29–33. doi: 10.1145/3574318.3574345.
J. V Perez et al., “Implementation of Convolutional Neural Network of Non-Biodegradable Garbage Classifier and Segregator Based on VGG16 Architecture,” in TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), 2023, pp. 501–506. doi: 10.1109/TENCON58879.2023.10322380.
M. I. B. Ahmed et al., “Deep Learning Approach to Recyclable Products Classification: Towards Sustainable Waste Management,” Sustainability (Switzerland), vol. 15, no. 14, Jul. 2023, doi: 10.3390/su151411138.
H. Younis and M. Obaid, “Performance Comparison of Pretrained Deep Learning Models for Landfill Waste Classification,” 2024. [Online]. Available: www.ijacsa.thesai.org
M. M. Hossen et al., “A Reliable and Robust Deep Learning Model for Effective Recyclable Waste Classification,” IEEE Access, vol. 12, pp. 13809–13821, 2024, doi: 10.1109/ACCESS.2024.3354774.
C. Sirawattananon, N. Muangnak, and W. Pukdee, “Designing of IoT-based Smart Waste Sorting System with Image-based Deep Learning Applications,” in 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2021, pp. 383–387. doi: 10.1109/ECTI-CON51831.2021.9454826.
M. Koskinopoulou, F. Raptopoulos, G. Papadopoulos, N. Mavrakis, and M. Maniadakis, “Robotic Waste Sorting Technology: Toward a Vision-Based Categorization System for the Industrial Robotic Separation of Recyclable Waste,” IEEE Robot Autom Mag, vol. 28, no. 2, pp. 50–60, 2021, doi: 10.1109/MRA.2021.3066040.
S. Thokrairak, K. Thibuy, and P. Jitngernmadan, “Valuable Waste Classification Modeling based on SSD-MobileNet,” in 2020 - 5th International Conference on Information Technology (InCIT), 2020, pp. 228–232. doi: 10.1109/InCIT50588.2020.9310928.
Sri Kruthika M, Rajadevi R, Sathya D, Varshini Shilin S, Sowbharanika Janani JS, and Suresh Babu K, “Garbage Classification: A Deep Learning Perspective,” International Research Journal on Advanced Engineering Hub (IRJAEH), vol. 2, no. 12, pp. 2774–2780, Dec. 2024, doi: 10.47392/IRJAEH.2024.0384.
N. Hayatin, B. Mavindo, and E. B. Cahyono, “The Development of Mobile Application Based Customer Service System in Bank Sampah Malang,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 291–298, Sep. 2017, doi: 10.22219/kinetik.v2i4.266.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv:1704.04861, Apr. 2017, [Online]. Available: http://arxiv.org/abs/1704.04861
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in Very Deep Convolutional Networks for Large-Scale Image Recognition, San Diego, May 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
D. Qin et al., “MobileNetV4: Universal Models for the Mobile Ecosystem,” in Computer Vision – ECCV 2024, A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds., Cham: Springer Nature Switzerland, 2025, pp. 78–96.
A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314–1324. doi: 10.1109/ICCV.2019.00140.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.
V. Jayaswal, S. Ji, Satyankar, V. Singh, Y. Singh, and V. Tiwari, “Image Captioning Using VGG-16 Deep Learning Model,” in 2024 2nd International Conference on Disruptive Technologies (ICDT), 2024, pp. 1428–1433. doi: 10.1109/ICDT61202.2024.10489470.