Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 4, November 2025
  4. Articles

Issue

Vol. 10, No. 4, November 2025

Issue Published : Nov 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Classification of Breast Cancer Histopathology Images with Attention-Based Multiple Instance Learning Method

https://doi.org/10.22219/kinetik.v10i4.2310
Safira Hasna Setiyani
Universitas Dian Nuswantoro
Edi Noersasongko
Universitas Dian Nuswantoro
Affandy
Universitas Dian Nuswantoro

Corresponding Author(s) : Safira Hasna Setiyani

shafira1995@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 4, November 2025
Article Published : Nov 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Breast cancer is one of the deadliest types of cancer among women worldwide. Early detection plays a crucial role in increasing the chances of successful treatment and reducing the risk of death. Various efforts have been made by both the general public and medical professionals to raise awareness, promote early screening, and ensure timely medical intervention. With advances in technology, the use of computer-based systems, particularly in the field of medical image analysis, has become increasingly important. One such application is histopathological image analysis to support the diagnostic process in breast cancer cases. Histopathological image classification has gained significant attention from researchers in recent years, and various machine learning and deep learning techniques have been applied to improve its accuracy. Convolutional Neural Networks (CNNs), as part of the deep learning framework, have shown promising results in identifying tissue patterns in histopathological images. However, despite their high accuracy, CNNs are often less interpretable, making it difficult to understand the reasoning behind their predictions—especially when dealing with subtle features such as small spots, dots, or fine lines that may be overlooked. This study addresses these limitations by proposing a method that not only classifies histopathological images with high accuracy but also enhances readability through localization techniques. The goal is to make the classification process more transparent and clinically useful. Using widely recognized datasets like BreakHIS, the proposed method achieves a classification accuracy of up to 97.50%, demonstrating its potential as a reliable tool in medical diagnostics and breast cancer research.

Keywords

Breast Cancer Machine Learning Images Classification
Setiyani, S. H., Noersasongko, E., & Affandy. (2025). Classification of Breast Cancer Histopathology Images with Attention-Based Multiple Instance Learning Method. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(4). https://doi.org/10.22219/kinetik.v10i4.2310
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. J. S. Brown, S. R. Amend, R. H. Austin, R. A. Gatenby, E. U. Hammarlund, and K. J. Pienta, “Updating the Definition of Cancer,” Molecular Cancer Research, vol. 21, no. 11, pp. 1142–1147, 2023. https://doi.org/10.1158/1541-7786.MCR-23-0411
  2. T. Agustin, “Potensi Metabolit Aktif Dalam Sayuran Cruciferous Untuk Menghambat Pertumbuhan Sel Kanker,” 2020.
  3. E. Marfianti, “Peningkatan Pengetahuan Kanker Payudara dan Ketrampilan Periksa Payudara Sendiri (SADARI) untuk Deteksi Dini Kanker Payudara di Semutan Jatimulyo Dlingo,” 2021. https://doi.org/10.20885/jamali.vol3.iss1.art4
  4. J. Zhou, Z. Wu, D. Aili, L. Wang, and T. Liu, “Exploration of the carcinogenetic and immune role of CHK1 in human cancer,” J Cancer, vol. 15, no. 18, pp. 5927–5941, 2024. https://doi.org/10.7150/jca.93930
  5. W. Ramdhani, D. Bona, R. B. Musyaffa, and C. Rozikin, “Klasifikasi Penyakit Kangker Payudara Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 12, pp. 445–452, 2022.
  6. Z. Zhang et al., “A new clinical prognosis model for breast cancer with ADSS as the hub gene,” J Cancer, vol. 15, no. 18, pp. 5910–5926, 2024. https://doi.org/10.7150/jca.95589
  7. A. Indah Sari, “Skrining Mamografi dan Mortalitas Kanker Payudara,” vol. 7, no. 7, p. 11, 2022.
  8. R. Resmiati and T. Arifin, “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” 2021. https://doi.org/10.32520/stmsi.v10i2.1238
  9. H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, no. 3, pp. 209–249, May 2021. https://doi.org/10.3322/caac.21660
  10. B. Zhang, H. Shi, and H. Wang, “Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach,” 2023, Dove Medical Press Ltd. https://doi.org/10.2147/JMDH.S410301
  11. N. Aidossov et al., “An Integrated Intelligent System for Breast Cancer Detection at Early Stages Using IR Images and Machine Learning Methods with Explainability,” SN Comput Sci, vol. 4, no. 2, Mar. 2023. https://doi.org/10.1007/s42979-022-01536-9
  12. I. Idawati, D. P. Rini, A. Primanita, and T. Saputra, “Klasifikasi Kanker Payudara Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur VGG-16,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 3, p. 529, Apr. 2024. https://doi.org/10.30865/json.v5i3.7553
  13. X. Xu, Q. Guo, Z. Li, and D. Li, “Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis,” Healthcare (Switzerland), vol. 10, no. 11, Nov. 2022. https://doi.org/10.3390/healthcare10112300
  14. S. A. Alanazi et al., “Boosting Breast Cancer Detection Using Convolutional Neural Network,” J Healthc Eng, vol. 2021, 2021. https://doi.org/10.1155/2021/5528622
  15. P. Kumar, S. Srivastava, R. K. Mishra, and Y. P. Sai, “End-to-end improved convolutional neural network model for breast cancer detection using mammographic data,” Journal of Defense Modeling and Simulation, vol. 19, no. 3, pp. 375–384, Jul. 2022. https://doi.org/10.1177/1548512920973268
  16. D. Kumar Saha, T. Hossain, M. Safran, S. Alfarhood, M. F. Mridha, and D. Che, “Segmentation for mammography classification utilizing deep convolutional neural network,” BMC Med Imaging, vol. 24, no. 1, Dec. 2024. https://doi.org/10.1186/s12880-024-01510-2
  17. J. Nouri Pour, M. A. Pourmina, and M. N. Moghaddasi, “Improving Breast Cancer Detection with Convolutional Neural Networks and Modified ResNet Architecture,” Curr Med Imaging Rev, vol. 20, Apr. 2024. https://doi.org/10.2174/0115734056290499240402102301
  18. N. Yudistira, M. S. Kavitha, J. Rajan, and T. Kurita, “Attention-effective multiple instance learning on weakly stem cell colony segmentation,” Intelligent Systems with Applications, vol. 17, Feb. 2023. https://doi.org/10.1016/j.iswa.2023.200187
  19. T. P. Theodore Armand, S. Bhattacharjee, and H. C. Kim, “Overview of the Potentials of Multiple Instance Learning in Cancer Diagnosis: Applications, Challenges, and Future Directions,” in International Conference on Advanced Communication Technology, ICACT, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 419–425. https://doi.org/10.23919/ICACT60172.2024.10471995
  20. Z. Shao et al., “TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification,” Jun. 2021. https://doi.org/10.48550/arXiv.2106.00908
  21. Y. Kim, T. Wang, D. Xiong, X. Wang, and S. Park, “Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences,” BMC Bioinformatics, vol. 23, no. 1, Dec. 2022. https://doi.org/10.1186/s12859-022-05012-2
  22. M. A. Carbonneau, E. Granger, and G. Gagnon, “Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems,” IEEE Trans Neural Netw Learn Syst, vol. 30, no. 5, pp. 1441–1451, May 2019. https://doi.org/10.1109/TNNLS.2018.2869164
  23. L. Cai, S. Huang, Y. Zhang, J. Lu, and Y. Zhang, “Rethinking Attention-Based Multiple Instance Learning for Whole-Slide Pathological Image Classification: An Instance Attribute Viewpoint,” Mar. 2024. https://doi.org/10.48550/arXiv.2404.00351
  24. H. Xiang, J. Shen, Q. Yan, M. Xu, X. Shi, and X. Zhu, “Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis,” Med Image Anal, vol. 89, p. 102890, 2023. https://doi.org/10.1016/j.media.2023.102890
  25. S. Fatima, S. Ali, and H. C. Kim, “A Comprehensive Review on Multiple Instance Learning,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics12204323
Read More

References


J. S. Brown, S. R. Amend, R. H. Austin, R. A. Gatenby, E. U. Hammarlund, and K. J. Pienta, “Updating the Definition of Cancer,” Molecular Cancer Research, vol. 21, no. 11, pp. 1142–1147, 2023. https://doi.org/10.1158/1541-7786.MCR-23-0411

T. Agustin, “Potensi Metabolit Aktif Dalam Sayuran Cruciferous Untuk Menghambat Pertumbuhan Sel Kanker,” 2020.

E. Marfianti, “Peningkatan Pengetahuan Kanker Payudara dan Ketrampilan Periksa Payudara Sendiri (SADARI) untuk Deteksi Dini Kanker Payudara di Semutan Jatimulyo Dlingo,” 2021. https://doi.org/10.20885/jamali.vol3.iss1.art4

J. Zhou, Z. Wu, D. Aili, L. Wang, and T. Liu, “Exploration of the carcinogenetic and immune role of CHK1 in human cancer,” J Cancer, vol. 15, no. 18, pp. 5927–5941, 2024. https://doi.org/10.7150/jca.93930

W. Ramdhani, D. Bona, R. B. Musyaffa, and C. Rozikin, “Klasifikasi Penyakit Kangker Payudara Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Ilmiah Wahana Pendidikan, vol. 2022, no. 12, pp. 445–452, 2022.

Z. Zhang et al., “A new clinical prognosis model for breast cancer with ADSS as the hub gene,” J Cancer, vol. 15, no. 18, pp. 5910–5926, 2024. https://doi.org/10.7150/jca.95589

A. Indah Sari, “Skrining Mamografi dan Mortalitas Kanker Payudara,” vol. 7, no. 7, p. 11, 2022.

R. Resmiati and T. Arifin, “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Pasien Kanker Payudara Menggunakan Metode Support Vector Machine dengan Backward Elimination,” 2021. https://doi.org/10.32520/stmsi.v10i2.1238

H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, no. 3, pp. 209–249, May 2021. https://doi.org/10.3322/caac.21660

B. Zhang, H. Shi, and H. Wang, “Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach,” 2023, Dove Medical Press Ltd. https://doi.org/10.2147/JMDH.S410301

N. Aidossov et al., “An Integrated Intelligent System for Breast Cancer Detection at Early Stages Using IR Images and Machine Learning Methods with Explainability,” SN Comput Sci, vol. 4, no. 2, Mar. 2023. https://doi.org/10.1007/s42979-022-01536-9

I. Idawati, D. P. Rini, A. Primanita, and T. Saputra, “Klasifikasi Kanker Payudara Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur VGG-16,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 3, p. 529, Apr. 2024. https://doi.org/10.30865/json.v5i3.7553

X. Xu, Q. Guo, Z. Li, and D. Li, “Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis,” Healthcare (Switzerland), vol. 10, no. 11, Nov. 2022. https://doi.org/10.3390/healthcare10112300

S. A. Alanazi et al., “Boosting Breast Cancer Detection Using Convolutional Neural Network,” J Healthc Eng, vol. 2021, 2021. https://doi.org/10.1155/2021/5528622

P. Kumar, S. Srivastava, R. K. Mishra, and Y. P. Sai, “End-to-end improved convolutional neural network model for breast cancer detection using mammographic data,” Journal of Defense Modeling and Simulation, vol. 19, no. 3, pp. 375–384, Jul. 2022. https://doi.org/10.1177/1548512920973268

D. Kumar Saha, T. Hossain, M. Safran, S. Alfarhood, M. F. Mridha, and D. Che, “Segmentation for mammography classification utilizing deep convolutional neural network,” BMC Med Imaging, vol. 24, no. 1, Dec. 2024. https://doi.org/10.1186/s12880-024-01510-2

J. Nouri Pour, M. A. Pourmina, and M. N. Moghaddasi, “Improving Breast Cancer Detection with Convolutional Neural Networks and Modified ResNet Architecture,” Curr Med Imaging Rev, vol. 20, Apr. 2024. https://doi.org/10.2174/0115734056290499240402102301

N. Yudistira, M. S. Kavitha, J. Rajan, and T. Kurita, “Attention-effective multiple instance learning on weakly stem cell colony segmentation,” Intelligent Systems with Applications, vol. 17, Feb. 2023. https://doi.org/10.1016/j.iswa.2023.200187

T. P. Theodore Armand, S. Bhattacharjee, and H. C. Kim, “Overview of the Potentials of Multiple Instance Learning in Cancer Diagnosis: Applications, Challenges, and Future Directions,” in International Conference on Advanced Communication Technology, ICACT, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 419–425. https://doi.org/10.23919/ICACT60172.2024.10471995

Z. Shao et al., “TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification,” Jun. 2021. https://doi.org/10.48550/arXiv.2106.00908

Y. Kim, T. Wang, D. Xiong, X. Wang, and S. Park, “Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences,” BMC Bioinformatics, vol. 23, no. 1, Dec. 2022. https://doi.org/10.1186/s12859-022-05012-2

M. A. Carbonneau, E. Granger, and G. Gagnon, “Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems,” IEEE Trans Neural Netw Learn Syst, vol. 30, no. 5, pp. 1441–1451, May 2019. https://doi.org/10.1109/TNNLS.2018.2869164

L. Cai, S. Huang, Y. Zhang, J. Lu, and Y. Zhang, “Rethinking Attention-Based Multiple Instance Learning for Whole-Slide Pathological Image Classification: An Instance Attribute Viewpoint,” Mar. 2024. https://doi.org/10.48550/arXiv.2404.00351

H. Xiang, J. Shen, Q. Yan, M. Xu, X. Shi, and X. Zhu, “Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis,” Med Image Anal, vol. 89, p. 102890, 2023. https://doi.org/10.1016/j.media.2023.102890

S. Fatima, S. Ali, and H. C. Kim, “A Comprehensive Review on Multiple Instance Learning,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics12204323

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License