
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Design of 2x1 Microstrip Antenna Array Single Band with Proximity Coupling for Enhanced CCTV Performance
Corresponding Author(s) : Dodi Setiabudi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 11, No. 1, February 2026 (Article in Progress)
Abstract
The increasing demand for reliable wireless communication in modern surveillance systems, particularly Closed-Circuit Television (CCTV), requires the development of antennas with high efficiency, wide bandwidth, and stable signal performance. To meet these requirements, this study presents the design and analysis of a 2×1 microstrip array antenna with rectangular patches that use proximity coupling, optimized for operation in the 2.4 GHz ISM band. The antenna was designed and simulated using CST Studio Suite to evaluate its electromagnetic characteristics, while measurements using a Vector Network Analyzer (VNA) were performed to validate the performance of the manufactured prototype. Simulation results show that the antenna achieves a reflection loss of −24.62 dB, a standing wave ratio (VSWR) of 1.12, and a frequency bandwidth of 159 MHz, indicating good impedance matching and wide operational capability. Meanwhile, measurement results showed a reflection loss of −12.59 dB, a VSWR of 1.15, and a frequency bandwidth of 86 MHz. Both simulation and measurement results showed directional radiation patterns, ensuring efficient energy radiation and better signal focus for monitoring coverage. The designed antenna also shows a measured gain of 9.25 dBi, exceeding the simulated gain of 6.99 dBi, confirming improved performance. The difference between simulation and measurement is mainly due to variations in substrate thickness, material tolerance, and environmental factors during testing. Overall, the proximal coupling approach has proven effective in improving coupling efficiency without adding design complexity. This antenna is well-suited for reliable and efficient data transmission in CCTV applications. Furthermore, the findings contribute significantly to advancements in antenna technology, particularly in the domains of wireless communication, IoT, and smart city-based surveillance systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. V Bhatt dan G. D. Makwana, “Slot-loaded Dual-Band Microstrip Patch Antenna for 5G and WLAN/WiMAX Wireless Applications,” Indian J. Sci. Technol., vol. 17, no. 22, hal. 2324–2330, 2024, doi: 10.17485/ijst/v17i22.810.
- M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, dan H. S. El-Hennawy, “Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna,” IET Journasls, hal. 286–290, 2019, doi: 10.1049/iet-map.2018.5122.
- A. Arora, A. Rana, A. Yadav, dan R. L. Yadava, “Design of microstrip patch antenna at 2.4 GHz for Wi-Fi and Bluetooth applications,” J. Phys. Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-6596/1921/1/012023.
- S. O. Hasan, O. S. Hammd, S. K. Ezzulddin, dan R. H. Mahmud, “Design and Performance Analysis of Rectangular Microstrip Patch Antennas Using Different Feeding Techniques for 5G Applications,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 8, hal. 833–841, 2023, doi: 10.32985/ijeces.14.8.2.
- H. A. Diawuo, K. Anim, dan Y.-B. Jung, “Coupled line proximity coupled microstrip linear array antenna for millimetre wave applications,” IET Microwaves, Antennas Propag., vol. 14(14), hal. 1886–1894, 2020, doi: 10.1049/iet-map.2020.0052.
- W. Gao, W. Withayachumnankul, M. Fujita, dan T. Nagatsuma, “3D Printed Terahertz Lens Antenna Fed by Effective-Medium-Clad Dielectric Waveguide,” 2023 35th Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2023, no. August, 2023, doi: 10.23919/URSIGASS57860.2023.10265356.
- S. Kamal dan P. Sen, “Microstrip-Ministered Proximity-Coupled Stacked Dual-Port Antenna for 6G Applications,” IEEE Access, vol. 12, no. January, hal. 2817–2829, 2024, doi: 10.1109/ACCESS.2023.3348548.
- W. Nie, H. Z. Wen, K. Da Xu, Y. Q. Luo, X. L. Yang, dan M. Zhou, “A Compact 4×4 Filtering Microstrip Patch Antenna Array With Dolph-Chebyshev Power Distribution,” IEEE Open J. Antennas Propag., vol. 3, no. June, hal. 1057–1062, 2022, doi: 10.1109/OJAP.2022.3204926.
- M. Narayan, K. K. Verma, dan H. Bhusan Baskey, “Comparison Between Coaxial Probe Feed Rectangular Microstrip Patch Antenna and Proximity Coupled Feed Rectangular Microstrip Patch Antenna for Wireless Application,” Int. Res. J. Eng. Technol., no. June, hal. 6652–6655, 2020, [Daring]. Tersedia pada: www.irjet.net
- R. Farias, C. Peixeiro, M. Heckler, dan E. Schlosser, “Circularly Polarized Single-Layer Microstrip Reflectarray Fed With a 2x2 Microstrip Patch Array,” J. Commun. Inf. Syst., vol. 38, no. 1, hal. 85–91, 2023, doi: 10.14209/jcis.2023.10.
- T. S. Persada, H. Ludiyati, F. M. Fernanda, dan A. D. Maharani, “Bandwidth Enhancement of the Rectangular Patch Antenna Using Artificial Dielectric and Proximity Coupled Line Feed,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, hal. 381–386, 2021, doi: 10.2991/aer.k.211106.061.
- S. Saxena dan N. Saxena, “Proximity coupled microstrip patch antenna for gain enhancement,” Proc. - 2020 Int. Conf. Adv. Comput. Commun. Mater. ICACCM 2020, vol. 1, hal. 423–426, 2020, doi: 10.1109/ICACCM50413.2020.9212889.
- and D. E. N.F.A. Hakim, I. Maulana, A.H.S. Budi, A.M. Ridwan, Y. Yuningsih, “Microstrip array antenna using proximity coupled and dolph chebyshev distribution for wi-fi 6e,” 2024 10th Int. Conf. Wirel. Telemat, hal. 1–5, 2024, doi: 10.1109/ICWT62080.2024.10674729.
- F. D. Diba dan A. Science, “Analysis And Design Of A Compact Microstrip Patch Antenna With Enhanced Bandwidth And Gain For Wirelesslocal Area Network ( Wlan ) Communication,” Addis Ababa Univ., no. May, 2021.
- O. Coskun dan N. Erginyurek, “Wideband Microstrip Patch Antenna Design At 2.4 GHz Frequency for Wireless Communication,” Sci. J. Mehmet Akif Ersoy Univ., vol. 7, no. 2, hal. 91–98, 2024, doi: 10.59875/1697099422.
- and B. K. C. Babaiah, K. Naveen, K. Dasari, K.U. Kumar, M. Sanjay, “Design and implementation of a microstrip array for wifi external antenna,” 2022 Int. Conf. Adv. Smart, Secur. Intell. Comput, hal. 1–5, 2022, doi: 10.1109/ASSIC55218.2022.10088360.
- D. Andhika Firmansyah dan A. Fashiha Hastawan, “Analisis Perbandingan Kompresi Citra Pada Beberapa Media Sosial,” J. Khatulistiwa Inform., vol. 11, no. 2, hal. 135–140, 2023.
- and D. L. S. Wu, H. Ye, A. Li, H. Tu, S. Xu, “A new method for reconstructing building model using machine learning,” J. Intell. Constr, vol. 3, no. 1, hal. 1–11, 2025, doi: 10.26599/JIC.2025.9180041.
- N. W. Kirana, “An Analysis of Slot Dimension Changing in Dual band Rectangular Patch Microstrip Antenna with Proximity Coupled Feed,” J. Informatics Telecommun. Eng., vol. 4, no. 1, hal. 246–253, 2020, doi: 10.31289/jite.v4i1.3961.
- F. Manalu, M. Wildan, M. F. Y. Dewantara, dan P. Wibowo, “Design of A Rectangular Patch Microstrip Array Antenna with Proximity Coupled on ADS-B Receiver,” vol. 11, no. 2, hal. 214–223, 2024, doi: 10.33019/jurnalecotipe.v11i2.4507.
- D. Setiabudi, A. Y. Santosa, D. T. Aksara, A. B. SATRIYA, D. W. HERDIYANTO, dan W. MULDAYANI, “Design and Analysis of Rectenna Using the Cockroft-Walton Method with L Matching Impedance,” Int. Conf. Clim. Chang. Sustain. Eng. ASEAN (CCSE-ASEAN)2019, 2019.
- K. Manjunath dan S. N. Reddy, “Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling,” Int. J. Exp. Res. Rev., vol. 39, hal. 129–141, 2024, doi: 10.52756/ijerr.2024.v39spl.010.
- G. Zalki dan D. Bakhar, “Design and Implementation of Microstrip patch Antenna Arrays for 2.4 GHz Applications,” 2022, [Daring]. Tersedia pada: https://doi.org/10.21203/rs.3.rs-994633/v1
- M. A. K. Khan, M. I. Ullah, T. A. Shaem, R. Kabir, dan M. A. Alim, “Ultra High Efficient 2x1 Graphene Patch Antenna Arrays for Single and Dual Band Operation,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934472.
- K. Shin dan S. Kim, “A method for extracting 3D-element based on local cost metrics resistant to radiometric distortion for realistic media application,” Electron. Lett., vol. Vol.59, no. No.16, 2023, doi: 10.1049/ell2.12916.
References
R. V Bhatt dan G. D. Makwana, “Slot-loaded Dual-Band Microstrip Patch Antenna for 5G and WLAN/WiMAX Wireless Applications,” Indian J. Sci. Technol., vol. 17, no. 22, hal. 2324–2330, 2024, doi: 10.17485/ijst/v17i22.810.
M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, dan H. S. El-Hennawy, “Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna,” IET Journasls, hal. 286–290, 2019, doi: 10.1049/iet-map.2018.5122.
A. Arora, A. Rana, A. Yadav, dan R. L. Yadava, “Design of microstrip patch antenna at 2.4 GHz for Wi-Fi and Bluetooth applications,” J. Phys. Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-6596/1921/1/012023.
S. O. Hasan, O. S. Hammd, S. K. Ezzulddin, dan R. H. Mahmud, “Design and Performance Analysis of Rectangular Microstrip Patch Antennas Using Different Feeding Techniques for 5G Applications,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 8, hal. 833–841, 2023, doi: 10.32985/ijeces.14.8.2.
H. A. Diawuo, K. Anim, dan Y.-B. Jung, “Coupled line proximity coupled microstrip linear array antenna for millimetre wave applications,” IET Microwaves, Antennas Propag., vol. 14(14), hal. 1886–1894, 2020, doi: 10.1049/iet-map.2020.0052.
W. Gao, W. Withayachumnankul, M. Fujita, dan T. Nagatsuma, “3D Printed Terahertz Lens Antenna Fed by Effective-Medium-Clad Dielectric Waveguide,” 2023 35th Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2023, no. August, 2023, doi: 10.23919/URSIGASS57860.2023.10265356.
S. Kamal dan P. Sen, “Microstrip-Ministered Proximity-Coupled Stacked Dual-Port Antenna for 6G Applications,” IEEE Access, vol. 12, no. January, hal. 2817–2829, 2024, doi: 10.1109/ACCESS.2023.3348548.
W. Nie, H. Z. Wen, K. Da Xu, Y. Q. Luo, X. L. Yang, dan M. Zhou, “A Compact 4×4 Filtering Microstrip Patch Antenna Array With Dolph-Chebyshev Power Distribution,” IEEE Open J. Antennas Propag., vol. 3, no. June, hal. 1057–1062, 2022, doi: 10.1109/OJAP.2022.3204926.
M. Narayan, K. K. Verma, dan H. Bhusan Baskey, “Comparison Between Coaxial Probe Feed Rectangular Microstrip Patch Antenna and Proximity Coupled Feed Rectangular Microstrip Patch Antenna for Wireless Application,” Int. Res. J. Eng. Technol., no. June, hal. 6652–6655, 2020, [Daring]. Tersedia pada: www.irjet.net
R. Farias, C. Peixeiro, M. Heckler, dan E. Schlosser, “Circularly Polarized Single-Layer Microstrip Reflectarray Fed With a 2x2 Microstrip Patch Array,” J. Commun. Inf. Syst., vol. 38, no. 1, hal. 85–91, 2023, doi: 10.14209/jcis.2023.10.
T. S. Persada, H. Ludiyati, F. M. Fernanda, dan A. D. Maharani, “Bandwidth Enhancement of the Rectangular Patch Antenna Using Artificial Dielectric and Proximity Coupled Line Feed,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, hal. 381–386, 2021, doi: 10.2991/aer.k.211106.061.
S. Saxena dan N. Saxena, “Proximity coupled microstrip patch antenna for gain enhancement,” Proc. - 2020 Int. Conf. Adv. Comput. Commun. Mater. ICACCM 2020, vol. 1, hal. 423–426, 2020, doi: 10.1109/ICACCM50413.2020.9212889.
and D. E. N.F.A. Hakim, I. Maulana, A.H.S. Budi, A.M. Ridwan, Y. Yuningsih, “Microstrip array antenna using proximity coupled and dolph chebyshev distribution for wi-fi 6e,” 2024 10th Int. Conf. Wirel. Telemat, hal. 1–5, 2024, doi: 10.1109/ICWT62080.2024.10674729.
F. D. Diba dan A. Science, “Analysis And Design Of A Compact Microstrip Patch Antenna With Enhanced Bandwidth And Gain For Wirelesslocal Area Network ( Wlan ) Communication,” Addis Ababa Univ., no. May, 2021.
O. Coskun dan N. Erginyurek, “Wideband Microstrip Patch Antenna Design At 2.4 GHz Frequency for Wireless Communication,” Sci. J. Mehmet Akif Ersoy Univ., vol. 7, no. 2, hal. 91–98, 2024, doi: 10.59875/1697099422.
and B. K. C. Babaiah, K. Naveen, K. Dasari, K.U. Kumar, M. Sanjay, “Design and implementation of a microstrip array for wifi external antenna,” 2022 Int. Conf. Adv. Smart, Secur. Intell. Comput, hal. 1–5, 2022, doi: 10.1109/ASSIC55218.2022.10088360.
D. Andhika Firmansyah dan A. Fashiha Hastawan, “Analisis Perbandingan Kompresi Citra Pada Beberapa Media Sosial,” J. Khatulistiwa Inform., vol. 11, no. 2, hal. 135–140, 2023.
and D. L. S. Wu, H. Ye, A. Li, H. Tu, S. Xu, “A new method for reconstructing building model using machine learning,” J. Intell. Constr, vol. 3, no. 1, hal. 1–11, 2025, doi: 10.26599/JIC.2025.9180041.
N. W. Kirana, “An Analysis of Slot Dimension Changing in Dual band Rectangular Patch Microstrip Antenna with Proximity Coupled Feed,” J. Informatics Telecommun. Eng., vol. 4, no. 1, hal. 246–253, 2020, doi: 10.31289/jite.v4i1.3961.
F. Manalu, M. Wildan, M. F. Y. Dewantara, dan P. Wibowo, “Design of A Rectangular Patch Microstrip Array Antenna with Proximity Coupled on ADS-B Receiver,” vol. 11, no. 2, hal. 214–223, 2024, doi: 10.33019/jurnalecotipe.v11i2.4507.
D. Setiabudi, A. Y. Santosa, D. T. Aksara, A. B. SATRIYA, D. W. HERDIYANTO, dan W. MULDAYANI, “Design and Analysis of Rectenna Using the Cockroft-Walton Method with L Matching Impedance,” Int. Conf. Clim. Chang. Sustain. Eng. ASEAN (CCSE-ASEAN)2019, 2019.
K. Manjunath dan S. N. Reddy, “Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling,” Int. J. Exp. Res. Rev., vol. 39, hal. 129–141, 2024, doi: 10.52756/ijerr.2024.v39spl.010.
G. Zalki dan D. Bakhar, “Design and Implementation of Microstrip patch Antenna Arrays for 2.4 GHz Applications,” 2022, [Daring]. Tersedia pada: https://doi.org/10.21203/rs.3.rs-994633/v1
M. A. K. Khan, M. I. Ullah, T. A. Shaem, R. Kabir, dan M. A. Alim, “Ultra High Efficient 2x1 Graphene Patch Antenna Arrays for Single and Dual Band Operation,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934472.
K. Shin dan S. Kim, “A method for extracting 3D-element based on local cost metrics resistant to radiometric distortion for realistic media application,” Electron. Lett., vol. Vol.59, no. No.16, 2023, doi: 10.1049/ell2.12916.