Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 11, No. 1, February 2026 (Article in Progress)
  4. Articles

Issue

Vol. 11, No. 1, February 2026 (Article in Progress)

Issue Published : Jan 24, 2026
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Design of 2x1 Microstrip Antenna Array Single Band with Proximity Coupling for Enhanced CCTV Performance

https://doi.org/10.22219/kinetik.v11i1.2303
Dodi Setiabudi
University of Jember
Citra Agustina
University of Jember
Muh. Arif Syaifullah
University of Jember
Catur Suko Sarwono
University of Jember
Dedy Wahyu Herdiyanto
University of Jember
Ali Rizal Chaidir
University of Jember
Muh Asnoer Laagu
University of Jember

Corresponding Author(s) : Dodi Setiabudi

dodi@unej.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 11, No. 1, February 2026 (Article in Progress)
Article Published : Jan 24, 2026

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The increasing demand for reliable wireless communication in modern surveillance systems, particularly Closed-Circuit Television (CCTV), requires the development of antennas with high efficiency, wide bandwidth, and stable signal performance. To meet these requirements, this study presents the design and analysis of a 2×1 microstrip array antenna with rectangular patches that use proximity coupling, optimized for operation in the 2.4 GHz ISM band. The antenna was designed and simulated using CST Studio Suite to evaluate its electromagnetic characteristics, while measurements using a Vector Network Analyzer (VNA) were performed to validate the performance of the manufactured prototype. Simulation results show that the antenna achieves a reflection loss of −24.62 dB, a standing wave ratio (VSWR) of 1.12, and a frequency bandwidth of 159 MHz, indicating good impedance matching and wide operational capability. Meanwhile, measurement results showed a reflection loss of −12.59 dB, a VSWR of 1.15, and a frequency bandwidth of 86 MHz. Both simulation and measurement results showed directional radiation patterns, ensuring efficient energy radiation and better signal focus for monitoring coverage. The designed antenna also shows a measured gain of 9.25 dBi, exceeding the simulated gain of 6.99 dBi, confirming improved performance. The difference between simulation and measurement is mainly due to variations in substrate thickness, material tolerance, and environmental factors during testing. Overall, the proximal coupling approach has proven effective in improving coupling efficiency without adding design complexity. This antenna is well-suited for reliable and efficient data transmission in CCTV applications. Furthermore, the findings contribute significantly to advancements in antenna technology, particularly in the domains of wireless communication, IoT, and smart city-based surveillance systems.

Keywords

Antenna Microstrip Array Rectangular Patch Proximity Coupling CCTV
Setiabudi, D., Agustina, C., Syaifullah, M. A., Sarwono, C. S., Herdiyanto, D. W., Chaidir, A. R., & Laagu, M. A. (2026). Design of 2x1 Microstrip Antenna Array Single Band with Proximity Coupling for Enhanced CCTV Performance . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 11(1). https://doi.org/10.22219/kinetik.v11i1.2303
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. R. V Bhatt dan G. D. Makwana, “Slot-loaded Dual-Band Microstrip Patch Antenna for 5G and WLAN/WiMAX Wireless Applications,” Indian J. Sci. Technol., vol. 17, no. 22, hal. 2324–2330, 2024, doi: 10.17485/ijst/v17i22.810.
  2. M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, dan H. S. El-Hennawy, “Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna,” IET Journasls, hal. 286–290, 2019, doi: 10.1049/iet-map.2018.5122.
  3. A. Arora, A. Rana, A. Yadav, dan R. L. Yadava, “Design of microstrip patch antenna at 2.4 GHz for Wi-Fi and Bluetooth applications,” J. Phys. Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-6596/1921/1/012023.
  4. S. O. Hasan, O. S. Hammd, S. K. Ezzulddin, dan R. H. Mahmud, “Design and Performance Analysis of Rectangular Microstrip Patch Antennas Using Different Feeding Techniques for 5G Applications,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 8, hal. 833–841, 2023, doi: 10.32985/ijeces.14.8.2.
  5. H. A. Diawuo, K. Anim, dan Y.-B. Jung, “Coupled line proximity coupled microstrip linear array antenna for millimetre wave applications,” IET Microwaves, Antennas Propag., vol. 14(14), hal. 1886–1894, 2020, doi: 10.1049/iet-map.2020.0052.
  6. W. Gao, W. Withayachumnankul, M. Fujita, dan T. Nagatsuma, “3D Printed Terahertz Lens Antenna Fed by Effective-Medium-Clad Dielectric Waveguide,” 2023 35th Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2023, no. August, 2023, doi: 10.23919/URSIGASS57860.2023.10265356.
  7. S. Kamal dan P. Sen, “Microstrip-Ministered Proximity-Coupled Stacked Dual-Port Antenna for 6G Applications,” IEEE Access, vol. 12, no. January, hal. 2817–2829, 2024, doi: 10.1109/ACCESS.2023.3348548.
  8. W. Nie, H. Z. Wen, K. Da Xu, Y. Q. Luo, X. L. Yang, dan M. Zhou, “A Compact 4×4 Filtering Microstrip Patch Antenna Array With Dolph-Chebyshev Power Distribution,” IEEE Open J. Antennas Propag., vol. 3, no. June, hal. 1057–1062, 2022, doi: 10.1109/OJAP.2022.3204926.
  9. M. Narayan, K. K. Verma, dan H. Bhusan Baskey, “Comparison Between Coaxial Probe Feed Rectangular Microstrip Patch Antenna and Proximity Coupled Feed Rectangular Microstrip Patch Antenna for Wireless Application,” Int. Res. J. Eng. Technol., no. June, hal. 6652–6655, 2020, [Daring]. Tersedia pada: www.irjet.net
  10. R. Farias, C. Peixeiro, M. Heckler, dan E. Schlosser, “Circularly Polarized Single-Layer Microstrip Reflectarray Fed With a 2x2 Microstrip Patch Array,” J. Commun. Inf. Syst., vol. 38, no. 1, hal. 85–91, 2023, doi: 10.14209/jcis.2023.10.
  11. T. S. Persada, H. Ludiyati, F. M. Fernanda, dan A. D. Maharani, “Bandwidth Enhancement of the Rectangular Patch Antenna Using Artificial Dielectric and Proximity Coupled Line Feed,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, hal. 381–386, 2021, doi: 10.2991/aer.k.211106.061.
  12. S. Saxena dan N. Saxena, “Proximity coupled microstrip patch antenna for gain enhancement,” Proc. - 2020 Int. Conf. Adv. Comput. Commun. Mater. ICACCM 2020, vol. 1, hal. 423–426, 2020, doi: 10.1109/ICACCM50413.2020.9212889.
  13. and D. E. N.F.A. Hakim, I. Maulana, A.H.S. Budi, A.M. Ridwan, Y. Yuningsih, “Microstrip array antenna using proximity coupled and dolph chebyshev distribution for wi-fi 6e,” 2024 10th Int. Conf. Wirel. Telemat, hal. 1–5, 2024, doi: 10.1109/ICWT62080.2024.10674729.
  14. F. D. Diba dan A. Science, “Analysis And Design Of A Compact Microstrip Patch Antenna With Enhanced Bandwidth And Gain For Wirelesslocal Area Network ( Wlan ) Communication,” Addis Ababa Univ., no. May, 2021.
  15. O. Coskun dan N. Erginyurek, “Wideband Microstrip Patch Antenna Design At 2.4 GHz Frequency for Wireless Communication,” Sci. J. Mehmet Akif Ersoy Univ., vol. 7, no. 2, hal. 91–98, 2024, doi: 10.59875/1697099422.
  16. and B. K. C. Babaiah, K. Naveen, K. Dasari, K.U. Kumar, M. Sanjay, “Design and implementation of a microstrip array for wifi external antenna,” 2022 Int. Conf. Adv. Smart, Secur. Intell. Comput, hal. 1–5, 2022, doi: 10.1109/ASSIC55218.2022.10088360.
  17. D. Andhika Firmansyah dan A. Fashiha Hastawan, “Analisis Perbandingan Kompresi Citra Pada Beberapa Media Sosial,” J. Khatulistiwa Inform., vol. 11, no. 2, hal. 135–140, 2023.
  18. and D. L. S. Wu, H. Ye, A. Li, H. Tu, S. Xu, “A new method for reconstructing building model using machine learning,” J. Intell. Constr, vol. 3, no. 1, hal. 1–11, 2025, doi: 10.26599/JIC.2025.9180041.
  19. N. W. Kirana, “An Analysis of Slot Dimension Changing in Dual band Rectangular Patch Microstrip Antenna with Proximity Coupled Feed,” J. Informatics Telecommun. Eng., vol. 4, no. 1, hal. 246–253, 2020, doi: 10.31289/jite.v4i1.3961.
  20. F. Manalu, M. Wildan, M. F. Y. Dewantara, dan P. Wibowo, “Design of A Rectangular Patch Microstrip Array Antenna with Proximity Coupled on ADS-B Receiver,” vol. 11, no. 2, hal. 214–223, 2024, doi: 10.33019/jurnalecotipe.v11i2.4507.
  21. D. Setiabudi, A. Y. Santosa, D. T. Aksara, A. B. SATRIYA, D. W. HERDIYANTO, dan W. MULDAYANI, “Design and Analysis of Rectenna Using the Cockroft-Walton Method with L Matching Impedance,” Int. Conf. Clim. Chang. Sustain. Eng. ASEAN (CCSE-ASEAN)2019, 2019.
  22. K. Manjunath dan S. N. Reddy, “Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling,” Int. J. Exp. Res. Rev., vol. 39, hal. 129–141, 2024, doi: 10.52756/ijerr.2024.v39spl.010.
  23. G. Zalki dan D. Bakhar, “Design and Implementation of Microstrip patch Antenna Arrays for 2.4 GHz Applications,” 2022, [Daring]. Tersedia pada: https://doi.org/10.21203/rs.3.rs-994633/v1
  24. M. A. K. Khan, M. I. Ullah, T. A. Shaem, R. Kabir, dan M. A. Alim, “Ultra High Efficient 2x1 Graphene Patch Antenna Arrays for Single and Dual Band Operation,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934472.
  25. K. Shin dan S. Kim, “A method for extracting 3D-element based on local cost metrics resistant to radiometric distortion for realistic media application,” Electron. Lett., vol. Vol.59, no. No.16, 2023, doi: 10.1049/ell2.12916.
Read More

References


R. V Bhatt dan G. D. Makwana, “Slot-loaded Dual-Band Microstrip Patch Antenna for 5G and WLAN/WiMAX Wireless Applications,” Indian J. Sci. Technol., vol. 17, no. 22, hal. 2324–2330, 2024, doi: 10.17485/ijst/v17i22.810.

M. E. Yassin, H. A. Mohamed, E. A. F. Abdallah, dan H. S. El-Hennawy, “Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna,” IET Journasls, hal. 286–290, 2019, doi: 10.1049/iet-map.2018.5122.

A. Arora, A. Rana, A. Yadav, dan R. L. Yadava, “Design of microstrip patch antenna at 2.4 GHz for Wi-Fi and Bluetooth applications,” J. Phys. Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-6596/1921/1/012023.

S. O. Hasan, O. S. Hammd, S. K. Ezzulddin, dan R. H. Mahmud, “Design and Performance Analysis of Rectangular Microstrip Patch Antennas Using Different Feeding Techniques for 5G Applications,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 8, hal. 833–841, 2023, doi: 10.32985/ijeces.14.8.2.

H. A. Diawuo, K. Anim, dan Y.-B. Jung, “Coupled line proximity coupled microstrip linear array antenna for millimetre wave applications,” IET Microwaves, Antennas Propag., vol. 14(14), hal. 1886–1894, 2020, doi: 10.1049/iet-map.2020.0052.

W. Gao, W. Withayachumnankul, M. Fujita, dan T. Nagatsuma, “3D Printed Terahertz Lens Antenna Fed by Effective-Medium-Clad Dielectric Waveguide,” 2023 35th Gen. Assem. Sci. Symp. Int. Union Radio Sci. URSI GASS 2023, no. August, 2023, doi: 10.23919/URSIGASS57860.2023.10265356.

S. Kamal dan P. Sen, “Microstrip-Ministered Proximity-Coupled Stacked Dual-Port Antenna for 6G Applications,” IEEE Access, vol. 12, no. January, hal. 2817–2829, 2024, doi: 10.1109/ACCESS.2023.3348548.

W. Nie, H. Z. Wen, K. Da Xu, Y. Q. Luo, X. L. Yang, dan M. Zhou, “A Compact 4×4 Filtering Microstrip Patch Antenna Array With Dolph-Chebyshev Power Distribution,” IEEE Open J. Antennas Propag., vol. 3, no. June, hal. 1057–1062, 2022, doi: 10.1109/OJAP.2022.3204926.

M. Narayan, K. K. Verma, dan H. Bhusan Baskey, “Comparison Between Coaxial Probe Feed Rectangular Microstrip Patch Antenna and Proximity Coupled Feed Rectangular Microstrip Patch Antenna for Wireless Application,” Int. Res. J. Eng. Technol., no. June, hal. 6652–6655, 2020, [Daring]. Tersedia pada: www.irjet.net

R. Farias, C. Peixeiro, M. Heckler, dan E. Schlosser, “Circularly Polarized Single-Layer Microstrip Reflectarray Fed With a 2x2 Microstrip Patch Array,” J. Commun. Inf. Syst., vol. 38, no. 1, hal. 85–91, 2023, doi: 10.14209/jcis.2023.10.

T. S. Persada, H. Ludiyati, F. M. Fernanda, dan A. D. Maharani, “Bandwidth Enhancement of the Rectangular Patch Antenna Using Artificial Dielectric and Proximity Coupled Line Feed,” Proc. 2nd Int. Semin. Sci. Appl. Technol. (ISSAT 2021), vol. 207, no. Issat, hal. 381–386, 2021, doi: 10.2991/aer.k.211106.061.

S. Saxena dan N. Saxena, “Proximity coupled microstrip patch antenna for gain enhancement,” Proc. - 2020 Int. Conf. Adv. Comput. Commun. Mater. ICACCM 2020, vol. 1, hal. 423–426, 2020, doi: 10.1109/ICACCM50413.2020.9212889.

and D. E. N.F.A. Hakim, I. Maulana, A.H.S. Budi, A.M. Ridwan, Y. Yuningsih, “Microstrip array antenna using proximity coupled and dolph chebyshev distribution for wi-fi 6e,” 2024 10th Int. Conf. Wirel. Telemat, hal. 1–5, 2024, doi: 10.1109/ICWT62080.2024.10674729.

F. D. Diba dan A. Science, “Analysis And Design Of A Compact Microstrip Patch Antenna With Enhanced Bandwidth And Gain For Wirelesslocal Area Network ( Wlan ) Communication,” Addis Ababa Univ., no. May, 2021.

O. Coskun dan N. Erginyurek, “Wideband Microstrip Patch Antenna Design At 2.4 GHz Frequency for Wireless Communication,” Sci. J. Mehmet Akif Ersoy Univ., vol. 7, no. 2, hal. 91–98, 2024, doi: 10.59875/1697099422.

and B. K. C. Babaiah, K. Naveen, K. Dasari, K.U. Kumar, M. Sanjay, “Design and implementation of a microstrip array for wifi external antenna,” 2022 Int. Conf. Adv. Smart, Secur. Intell. Comput, hal. 1–5, 2022, doi: 10.1109/ASSIC55218.2022.10088360.

D. Andhika Firmansyah dan A. Fashiha Hastawan, “Analisis Perbandingan Kompresi Citra Pada Beberapa Media Sosial,” J. Khatulistiwa Inform., vol. 11, no. 2, hal. 135–140, 2023.

and D. L. S. Wu, H. Ye, A. Li, H. Tu, S. Xu, “A new method for reconstructing building model using machine learning,” J. Intell. Constr, vol. 3, no. 1, hal. 1–11, 2025, doi: 10.26599/JIC.2025.9180041.

N. W. Kirana, “An Analysis of Slot Dimension Changing in Dual band Rectangular Patch Microstrip Antenna with Proximity Coupled Feed,” J. Informatics Telecommun. Eng., vol. 4, no. 1, hal. 246–253, 2020, doi: 10.31289/jite.v4i1.3961.

F. Manalu, M. Wildan, M. F. Y. Dewantara, dan P. Wibowo, “Design of A Rectangular Patch Microstrip Array Antenna with Proximity Coupled on ADS-B Receiver,” vol. 11, no. 2, hal. 214–223, 2024, doi: 10.33019/jurnalecotipe.v11i2.4507.

D. Setiabudi, A. Y. Santosa, D. T. Aksara, A. B. SATRIYA, D. W. HERDIYANTO, dan W. MULDAYANI, “Design and Analysis of Rectenna Using the Cockroft-Walton Method with L Matching Impedance,” Int. Conf. Clim. Chang. Sustain. Eng. ASEAN (CCSE-ASEAN)2019, 2019.

K. Manjunath dan S. N. Reddy, “Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling,” Int. J. Exp. Res. Rev., vol. 39, hal. 129–141, 2024, doi: 10.52756/ijerr.2024.v39spl.010.

G. Zalki dan D. Bakhar, “Design and Implementation of Microstrip patch Antenna Arrays for 2.4 GHz Applications,” 2022, [Daring]. Tersedia pada: https://doi.org/10.21203/rs.3.rs-994633/v1

M. A. K. Khan, M. I. Ullah, T. A. Shaem, R. Kabir, dan M. A. Alim, “Ultra High Efficient 2x1 Graphene Patch Antenna Arrays for Single and Dual Band Operation,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, hal. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934472.

K. Shin dan S. Kim, “A method for extracting 3D-element based on local cost metrics resistant to radiometric distortion for realistic media application,” Electron. Lett., vol. Vol.59, no. No.16, 2023, doi: 10.1049/ell2.12916.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Prof. Robert Lis
Editorial Board
Wrocław University of Science and Technology
Orcid  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Prof. Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License