Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 3, August 2025
  4. Articles

Issue

Vol. 10, No. 3, August 2025

Issue Published : Jun 13, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Efficient Thoracic Abnormalities Detection Using Mobile Deep Learning Models

https://doi.org/10.22219/kinetik.v10i3.2268
Achmad Bauravindah
Islamic University of Indonesia
Dhomas Hatta Fudholi
Islamic Universirty of Indonesia
Rima Tri Wahyuningrum
Universitas Trunojoyo Madura

Corresponding Author(s) : Achmad Bauravindah

baurav99@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 3, August 2025
Article Published : Jul 12, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Indonesia faces a critical shortage of radiologists, with only 1.2 radiologists per 100,000 individuals. This shortage leads to delays in diagnosing thoracic abnormalities such as pneumothorax, cardiomegaly, nodule/mass, consolidation, and infiltration. Chest X-ray (CXR) interpretation remains challenging due to overlapping radiological features, necessitating AI-assisted solutions. This study evaluates three lightweight deep learning models—MobileNetV2, ShuffleNetV2, and EfficientNetB0—for automated thoracic abnormality detection using the ChestX-ray8 dataset. We assessed model performance using accuracy, precision, recall, F1-score, and AUC-ROC, selecting the best model based on the highest per-fold F1-score. EfficientNetB0 emerged as the top-performing model, achieving a macro-average F1-score of 0.556 and AUC-ROC of 0.765, outperforming MobileNetV2 (0.494, 0.719) and ShuffleNetV2 (0.481, 0.713). Grad-CAM analysis revealed strong localization for pneumothorax and consolidation but misclassifications in cardiomegaly and nodule/mass detection due to poor feature differentiation. The findings highlight EfficientNetB0’s potential as an AI-assisted diagnostic tool for low-resource settings while also underscoring the need for segmentation-based pretraining and multi-scale feature extraction to enhance detection accuracy. Future work should focus on optimizing sensitivity to subtle abnormalities and ensuring clinical trust through improved interpretability techniques.

Keywords

Artificial Intelligence Healthcare Chest X-Ray Image Mobile Deep Learning Lung Abnormalities
Bauravindah, A., Fudholi, D. H., & Wahyuningrum, R. T. (2025). Efficient Thoracic Abnormalities Detection Using Mobile Deep Learning Models. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(3), 411-430. https://doi.org/10.22219/kinetik.v10i3.2268
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. D. R. Wulan, “Kegiatan Puncak Hari Tuberkulosis Sedunia 2024: Gerakan Indonesia Akhiri Tuberkulosis,” TBC Indonesia, 2024.
  2. S. Dayne, “Protecting children from the most-deadly infectious disease in Indonesia | UNICEF Indonesia.”, 2024.
  3. Statista, “Indonesia: COPD projection 2017-2024,” Statista., 2024.
  4. S. Andarini, E. Syahruddin, N. Aditya, J. Zaini, F. D. Kurniawan, S. Ermayanti, N. N. Soeroso, S. M. Munir, A. Infianto, A. Rima, U. A. Setyawan, L. Wulandari, H. Haryati, I. A. Jasminarti, and A. Santoso, “Indonesian Society of Respirology (ISR) Consensus Statement on Lung Cancer Screening and Early Detection in Indonesia,” J Respirol Indones, vol. 43, no. 2, pp. 144–150, Apr. 2023. https://doi.org/10.36497/jri.v43i2.455
  5. F. R. Muharram, C. E. C. Z. Multazam, A. Mustofa, W. Socha, Andrianto, S. Martini, L. Aminde, and C. Yi-Li, “The 30 Years of Shifting in The Indonesian Cardiovascular Burden—Analysis of The Global Burden of Disease Study,” J Epidemiol Glob Health, vol. 14, no. 1, pp. 193–212, Feb. 2024. https://doi.org/10.1007/s44197-024-00187-8
  6. R. Shah Gupta, A. Koteci, A. Morgan, P. M. George, and J. K. Quint, “Incidence and prevalence of interstitial lung diseases worldwide: a systematic literature review,” BMJ Open Resp Res, vol. 10, no. 1, p. e001291, Jun. 2023. https://doi.org/10.1136/bmjresp-2022-001291
  7. nela, “Indonesia faces shortage of specialized doctors, hindering healthcare services,” The Online Citizen, 2025.
  8. R. E. Yunus, “Radiology Loading and Coverage Hours in Indonesia,” Korean J Radiol, vol. 25, no. 7, pp. 597–599, Jul. 2024. https://doi.org/10.3348/kjr.2024.0267
  9. S. Inui, W. Gonoi, R. Kurokawa, Y. Nakai, Y. Watanabe, K. Sakurai, M. Ishida, A. Fujikawa, and O. Abe, “The role of chest imaging in the diagnosis, management, and monitoring of coronavirus disease 2019 (COVID-19),” Insights into Imaging, vol. 12, no. 1, p. 155, Nov. 2021. https://doi.org/10.1186/s13244-021-01096-1
  10. S. H. Bradley, S. Abraham, M. E. Callister, A. Grice, W. T. Hamilton, R. R. Lopez, B. Shinkins, and R. D. Neal, “Sensitivity of chest X-ray for detecting lung cancer in people presenting with symptoms: a systematic review,” Br J Gen Pract, vol. 69, no. 689, pp. e827–e835, Dec. 2019. https://doi.org/10.3399/bjgp19X706853
  11. T. Jewell, “Chest X-rays in Tuberculosis Diagnosis,” Healthline, 2024.
  12. L. A. Eisen, J. S. Berger, A. Hegde, and R. F. Schneider, “Competency in Chest Radiography,” J Gen Intern Med, vol. 21, no. 5, pp. 460–465, May 2006. https://doi.org/10.1111/j.1525-1497.2006.00427.x
  13. J. Rafferty, “Qualifications for interpreting/classifying chest roentenograms and maintenance of interpretation forms. | Occupational Safety and Health Administration.”, 2025.
  14. J. B. Bomanji, N. Gupta, P. Gulati, and C. J. Das, “Imaging in TuberculosisImaging in Tuberculosis,” Cold Spring Harb Perspect Med, vol. 5, no. 6, p. a017814, Jun. 2015. https://doi.org/10.1101/cshperspect.a017814
  15. Y. J. Jeong and K. S. Lee, “Pulmonary Tuberculosis: Up-to-Date Imaging and Management,” American Journal of Roentgenology, vol. 191, no. 3, pp. 834–844, Sep. 2008. https://doi.org/10.2214/AJR.07.3896
  16. F. Gaillard, “Consolidation | Radiology Reference Article | Radiopaedia.org,” Radiopaedia, 2025.
  17. K. S. Lee, J. Han, M. P. Chung, and Y. J. Jeong, “Consolidation,” Radiology Illustrated: Chest Radiology, pp. 221–233, Aug. 2013. https://doi.org/10.1007/978-3-642-37096-0_22
  18. S. Pochepnia, E. M. Grabczak, E. Johnson, F. O. Eyuboglu, O. Akkerman, and H. Prosch, “Imaging in pulmonary infections of immunocompetent adult patients,” Breathe, vol. 20, no. 1, Apr. 2024. https://doi.org/10.1183/20734735.0186-2023
  19. T. Cheng, H. Wan, Q. Cheng, Y. Guo, Y. Qian, L. Fan, Y. Feng, Y. Song, M. Zhou, Q. Li, G. Shi, and S. Huang, “Computed tomography manifestation of acute exacerbation of chronic obstructive pulmonary disease: A pilot study,” Experimental and Therapeutic Medicine, vol. 11, no. 2, pp. 519–529, Feb. 2016. https://doi.org/10.3892/etm.2015.2930
  20. clevelandclinic, “Pneumothorax (Collapsed Lung),” Cleveland Clinic, 2025.
  21. P. T. King, “Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer,” Clin Transl Med, vol. 4, p. 26, Jul. 2015. https://doi.org/10.1186/s40169-015-0068-z
  22. C. L. McKnight and B. Burns, “Pneumothorax,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025.
  23. B. A. Rangelov, A. L. Young, J. Jacob, A. P. Cahn, S. Lee, F. J. Wilson, D. J. Hawkes, and J. R. Hurst, “Thoracic Imaging at Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review,” Int J Chron Obstruct Pulmon Dis, vol. 15, pp. 1751–1787, Jul. 2020. https://doi.org/10.2147/COPD.S250746
  24. cancer.org, “Lung Cancer Early Detection, Diagnosis, and Staging.”
  25. utswmed, “Lung Nodules | Condition | UT Southwestern Medical Center.”, 2025.
  26. H. Amin and W. J. Siddiqui, “Cardiomegaly,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025.
  27. E. K. K. Brakohiapa, B. O. Botwe, B. D. Sarkodie, E. K. Ofori, and J. Coleman, “Radiographic determination of cardiomegaly using cardiothoracic ratio and transverse cardiac diameter: can one size fit all? Part one,” Pan Afr Med J, vol. 27, p. 201, Jul. 2017. https://doi.org/10.11604/pamj.2017.27.201.12017
  28. clevelandclinic, “Enlarged Heart (Cardiomegaly): What It Is, Symptoms & Treatment,” Cleveland Clinic, 2025.
  29. I. Cundrle, L. J. Olson, and B. D. Johnson, “Pulmonary Limitations in Heart Failure,” Clin Chest Med, vol. 40, no. 2, pp. 439–448, Jun. 2019. https://doi.org/10.1016/j.ccm.2019.02.010
  30. T. S. Metkus, “Pulmonary edema: MedlinePlus Medical Encyclopedia.”, 2025.
  31. L. Ridley, “Chest Radiograph Signs Suggestive of Pericardial Disease,” American College of Cardiology, 2025.
  32. J. G. Nam, M. Kim, J. Park, E. J. Hwang, J. H. Lee, J. H. Hong, J. M. Goo, and C. M. Park, “Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs,” Eur Respir J, vol. 57, no. 5, p. 2003061, May 2021. https://doi.org/10.1183/13993003.03061-2020
  33. P. G. Anderson, H. Tarder-Stoll, M. Alpaslan, N. Keathley, D. L. Levin, S. Venkatesh, E. Bartel, S. Sicular, S. Howell, R. V. Lindsey, and R. M. Jones, “Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays,” Sci Rep, vol. 14, no. 1, p. 25151, Oct. 2024. https://doi.org/10.1038/s41598-024-76608-2
  34. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 3462–3471. https://doi.org/10.1109/CVPR.2017.369
  35. L. Guo, C. Zhou, J. Xu, C. Huang, Y. Yu, and G. Lu, “Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists with or Without Artificial Intelligence Assistance,” J Digit Imaging. Inform. med., vol. 37, no. 3, pp. 922–934, Feb. 2024. https://doi.org/10.1007/s10278-024-00990-6
  36. D. Kvak, A. Chromcová, M. Biroš, R. Hrubý, K. Kvaková, M. Pajdaković, and P. Ovesná, “Chest X-ray Abnormality Detection by Using Artificial Intelligence: A Single-Site Retrospective Study of Deep Learning Model Performance,” BioMedInformatics, vol. 3, no. 1, Art. no. 1, Mar. 2023. https://doi.org/10.3390/biomedinformatics3010006
  37. E. Blantz, “4 Key Challenges and Solutions to ICT Deployments for Rural Healthcare,” ICTworks, 2024.
  38. PricewaterhouseCoopers, “How can technology accelerate the digitisation of the Indonesian healthcare sector?,” PwC, 2024.
  39. S. Sarkar, “Overcoming Hospital Challenges with Enhanced Technology Solutions in Indonesia,” 2021.
  40. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 16, 2017, arXiv: arXiv:1704.04861, 2023. https://doi.org/10.48550/arXiv.1704.04861
  41. M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” Sep. 11, 2020, arXiv: arXiv:1905.11946. https://doi.org/10.48550/arXiv.1905.11946
  42. X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Dec. 07, 2017, arXiv: arXiv:1707.01083, 2024. https://doi.org/10.48550/arXiv.1707.01083
  43. K. G. van Leeuwen, M. de Rooij, S. Schalekamp, B. van Ginneken, and M. J. C. M. Rutten, “How does artificial intelligence in radiology improve efficiency and health outcomes?,” Pediatr Radiol, vol. 52, no. 11, pp. 2087–2093, Oct. 2022. https://doi.org/10.1007/s00247-021-05114-8
  44. M. Rybczak and K. Kozakiewicz, “Deep Machine Learning of MobileNet, Efficient, and Inception Models,” Algorithms, vol. 17, no. 3, Art. no. 3, Mar. 2024. https://doi.org/10.3390/a17030096
  45. S. Kolonne, C. Fernando, H. Kumarasinghe, and D. Meedeniya, “MobileNetV2 Based Chest X-Rays Classification,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain: IEEE, Dec. 2021, pp. 57–61. https://doi.org/10.1109/DASA53625.2021.9682248
  46. S. Akter, F. M. J. M. Shamrat, S. Chakraborty, A. Karim, and S. Azam, “COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images,” Biology (Basel), vol. 10, no. 11, p. 1174, Nov. 2021. https://doi.org/10.3390/biology10111174
  47. S. Velu, “An efficient, lightweight MobileNetV2-based fine-tuned model for COVID-19 detection using chest X-ray images,” MBE, vol. 20, no. 5, Art. no. mbe-20-05-368, 2023. https://doi.org/10.3934/mbe.2023368
  48. H. Iqbal, A. Khan, N. Nepal, F. Khan, and Y.-K. Moon, “Deep Learning Approaches for Chest Radiograph Interpretation: A Systematic Review,” Electronics, vol. 13, no. 23, Art. no. 23, Jan. 2024. https://doi.org/10.3390/electronics13234688
  49. C. Gu and M. Lee, “Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images,” Bioengineering, vol. 11, no. 4, p. 406, Apr. 2024. https://doi.org/10.3390/bioengineering11040406
  50. L. An, K. Peng, X. Yang, P. Huang, Y. Luo, P. Feng, and B. Wei, “E-TBNet: Light Deep Neural Network for Automatic Detection of Tuberculosis with X-ray DR Imaging,” Sensors, vol. 22, no. 3, p. 821, Jan. 2022. https://doi.org/10.3390/s22030821
  51. H. Mzoughi, I. Njeh, M. B. Slima, and A. BenHamida, “Deep efficient-nets with transfer learning assisted detection of COVID-19 using chest X-ray radiology imaging,” Multimed Tools Appl, vol. 82, no. 25, pp. 39303–39325, Oct. 2023. https://doi.org/10.1007/s11042-023-15097-3
  52. K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning,” Procedia Computer Science, vol. 235, pp. 70–80, 2024. https://doi.org/10.1016/j.procs.2024.04.007
  53. Q. An, W. Chen, and W. Shao, “A Deep Convolutional Neural Network for Pneumonia Detection in X-ray Images with Attention Ensemble,” Diagnostics (Basel), vol. 14, no. 4, p. 390, Feb. 2024. https://doi.org/10.3390/diagnostics14040390
  54. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” Int J Comput Vis, vol. 128, no. 2, pp. 336–359, Feb. 2020. https://doi.org/10.1007/s11263-019-01228-7
  55. S. Suara, A. Jha, P. Sinha, and A. A. Sekh, “Is Grad-CAM Explainable in Medical Images?,” vol. 2009, 2024, pp. 124–135. https://doi.org/10.1007/978-3-031-58181-6_11
  56. N. Le, B. Männel, M. Jarema, T. T. Luong, L. K. Bui, H. Q. Vy, and H. Schuh, “K-Fold Cross-Validation: An Effective Hyperparameter Tuning Technique in Machine Learning on GNSS Time Series for Movement Forecast,” in Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology, A. Çiner, Z. A. Ergüler, M. Bezzeghoud, M. Ustuner, M. Eshagh, H. El-Askary, A. Biswas, L. Gasperini, K.-G. Hinzen, M. Karakus, C. Comina, A. Karrech, A. Polonia, and H. I. Chaminé, Eds., in Advances in Science, Technology & Innovation. , Cham: Springer Nature Switzerland, 2024, pp. 377–382. https://doi.org/10.1007/978-3-031-43218-7_88
  57. P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, L. Liu and M. T. Özsu, Eds., Boston, MA: Springer US, 2009, pp. 532–538. https://doi.org/10.1007/978-0-387-39940-9_565
  58. G. Naidu, T. Zuva, and E. M. Sibanda, “A Review of Evaluation Metrics in Machine Learning Algorithms,” in Artificial Intelligence Application in Networks and Systems, R. Silhavy and P. Silhavy, Eds., Cham: Springer International Publishing, 2023, pp. 15–25. https://doi.org/10.1007/978-3-031-35314-7_2
  59. F. Melo, “Area under the ROC Curve,” in Encyclopedia of Systems Biology, W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Eds., New York, NY: Springer, 2013, pp. 38–39. https://www.doi.org/10.1007/978-1-4419-9863-7_209
  60. M. Gakhar and A. Aggarwal, “ThoraciNet: thoracic abnormality detection and disease classification using fusion DCNNs,” Phys Eng Sci Med, vol. 45, no. 3, pp. 961–970, Sep. 2022. https://doi.org/10.1007/s13246-022-01137-z
  61. E. Sahin, A. Celikten, S. Demirel, A. Akpulat, K. Budak, and H. Karatas, “Pneumonia Detection in Chest X - Ray Images Using Deep Learning and Grad-CAM++ Visualization,” in 2024 Innovations in Intelligent Systems and Applications Conference (ASYU), Ankara, Turkiye: IEEE, Oct. 2024, pp. 1–5. https://doi.org/10.1109/ASYU62119.2024.10756959
  62. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE, Jun. 2018, pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
  63. M. Päpper, “Depthwise Separable Convolutions in PyTorch :: Päpper’s Machine Learning Blog — This blog features state of the art applications in machine learning with a lot of PyTorch samples and deep learning code. You will learn about neural network optimization and potential insights for artificial intelligence for example in the medical domain.,” Depthwise Separable Convolutions in PyTorch, 2024.
  64. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” Jul. 30, 2018, arXiv: arXiv:1807.11164. https://doi.org/10.48550/arXiv.1807.11164
  65. X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Dec. 07, 2017, arXiv: arXiv:1707.01083. https://doi.org/10.48550/arXiv.1707.01083
  66. P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” Dec. 25, 2017, arXiv: arXiv:1711.05225. https://doi.org/10.48550/arXiv.1711.05225
  67. Roboflow, “Chest abnormalities > Browse,” Roboflow.
Read More

References


D. R. Wulan, “Kegiatan Puncak Hari Tuberkulosis Sedunia 2024: Gerakan Indonesia Akhiri Tuberkulosis,” TBC Indonesia, 2024.

S. Dayne, “Protecting children from the most-deadly infectious disease in Indonesia | UNICEF Indonesia.”, 2024.

Statista, “Indonesia: COPD projection 2017-2024,” Statista., 2024.

S. Andarini, E. Syahruddin, N. Aditya, J. Zaini, F. D. Kurniawan, S. Ermayanti, N. N. Soeroso, S. M. Munir, A. Infianto, A. Rima, U. A. Setyawan, L. Wulandari, H. Haryati, I. A. Jasminarti, and A. Santoso, “Indonesian Society of Respirology (ISR) Consensus Statement on Lung Cancer Screening and Early Detection in Indonesia,” J Respirol Indones, vol. 43, no. 2, pp. 144–150, Apr. 2023. https://doi.org/10.36497/jri.v43i2.455

F. R. Muharram, C. E. C. Z. Multazam, A. Mustofa, W. Socha, Andrianto, S. Martini, L. Aminde, and C. Yi-Li, “The 30 Years of Shifting in The Indonesian Cardiovascular Burden—Analysis of The Global Burden of Disease Study,” J Epidemiol Glob Health, vol. 14, no. 1, pp. 193–212, Feb. 2024. https://doi.org/10.1007/s44197-024-00187-8

R. Shah Gupta, A. Koteci, A. Morgan, P. M. George, and J. K. Quint, “Incidence and prevalence of interstitial lung diseases worldwide: a systematic literature review,” BMJ Open Resp Res, vol. 10, no. 1, p. e001291, Jun. 2023. https://doi.org/10.1136/bmjresp-2022-001291

nela, “Indonesia faces shortage of specialized doctors, hindering healthcare services,” The Online Citizen, 2025.

R. E. Yunus, “Radiology Loading and Coverage Hours in Indonesia,” Korean J Radiol, vol. 25, no. 7, pp. 597–599, Jul. 2024. https://doi.org/10.3348/kjr.2024.0267

S. Inui, W. Gonoi, R. Kurokawa, Y. Nakai, Y. Watanabe, K. Sakurai, M. Ishida, A. Fujikawa, and O. Abe, “The role of chest imaging in the diagnosis, management, and monitoring of coronavirus disease 2019 (COVID-19),” Insights into Imaging, vol. 12, no. 1, p. 155, Nov. 2021. https://doi.org/10.1186/s13244-021-01096-1

S. H. Bradley, S. Abraham, M. E. Callister, A. Grice, W. T. Hamilton, R. R. Lopez, B. Shinkins, and R. D. Neal, “Sensitivity of chest X-ray for detecting lung cancer in people presenting with symptoms: a systematic review,” Br J Gen Pract, vol. 69, no. 689, pp. e827–e835, Dec. 2019. https://doi.org/10.3399/bjgp19X706853

T. Jewell, “Chest X-rays in Tuberculosis Diagnosis,” Healthline, 2024.

L. A. Eisen, J. S. Berger, A. Hegde, and R. F. Schneider, “Competency in Chest Radiography,” J Gen Intern Med, vol. 21, no. 5, pp. 460–465, May 2006. https://doi.org/10.1111/j.1525-1497.2006.00427.x

J. Rafferty, “Qualifications for interpreting/classifying chest roentenograms and maintenance of interpretation forms. | Occupational Safety and Health Administration.”, 2025.

J. B. Bomanji, N. Gupta, P. Gulati, and C. J. Das, “Imaging in TuberculosisImaging in Tuberculosis,” Cold Spring Harb Perspect Med, vol. 5, no. 6, p. a017814, Jun. 2015. https://doi.org/10.1101/cshperspect.a017814

Y. J. Jeong and K. S. Lee, “Pulmonary Tuberculosis: Up-to-Date Imaging and Management,” American Journal of Roentgenology, vol. 191, no. 3, pp. 834–844, Sep. 2008. https://doi.org/10.2214/AJR.07.3896

F. Gaillard, “Consolidation | Radiology Reference Article | Radiopaedia.org,” Radiopaedia, 2025.

K. S. Lee, J. Han, M. P. Chung, and Y. J. Jeong, “Consolidation,” Radiology Illustrated: Chest Radiology, pp. 221–233, Aug. 2013. https://doi.org/10.1007/978-3-642-37096-0_22

S. Pochepnia, E. M. Grabczak, E. Johnson, F. O. Eyuboglu, O. Akkerman, and H. Prosch, “Imaging in pulmonary infections of immunocompetent adult patients,” Breathe, vol. 20, no. 1, Apr. 2024. https://doi.org/10.1183/20734735.0186-2023

T. Cheng, H. Wan, Q. Cheng, Y. Guo, Y. Qian, L. Fan, Y. Feng, Y. Song, M. Zhou, Q. Li, G. Shi, and S. Huang, “Computed tomography manifestation of acute exacerbation of chronic obstructive pulmonary disease: A pilot study,” Experimental and Therapeutic Medicine, vol. 11, no. 2, pp. 519–529, Feb. 2016. https://doi.org/10.3892/etm.2015.2930

clevelandclinic, “Pneumothorax (Collapsed Lung),” Cleveland Clinic, 2025.

P. T. King, “Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer,” Clin Transl Med, vol. 4, p. 26, Jul. 2015. https://doi.org/10.1186/s40169-015-0068-z

C. L. McKnight and B. Burns, “Pneumothorax,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025.

B. A. Rangelov, A. L. Young, J. Jacob, A. P. Cahn, S. Lee, F. J. Wilson, D. J. Hawkes, and J. R. Hurst, “Thoracic Imaging at Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review,” Int J Chron Obstruct Pulmon Dis, vol. 15, pp. 1751–1787, Jul. 2020. https://doi.org/10.2147/COPD.S250746

cancer.org, “Lung Cancer Early Detection, Diagnosis, and Staging.”

utswmed, “Lung Nodules | Condition | UT Southwestern Medical Center.”, 2025.

H. Amin and W. J. Siddiqui, “Cardiomegaly,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025.

E. K. K. Brakohiapa, B. O. Botwe, B. D. Sarkodie, E. K. Ofori, and J. Coleman, “Radiographic determination of cardiomegaly using cardiothoracic ratio and transverse cardiac diameter: can one size fit all? Part one,” Pan Afr Med J, vol. 27, p. 201, Jul. 2017. https://doi.org/10.11604/pamj.2017.27.201.12017

clevelandclinic, “Enlarged Heart (Cardiomegaly): What It Is, Symptoms & Treatment,” Cleveland Clinic, 2025.

I. Cundrle, L. J. Olson, and B. D. Johnson, “Pulmonary Limitations in Heart Failure,” Clin Chest Med, vol. 40, no. 2, pp. 439–448, Jun. 2019. https://doi.org/10.1016/j.ccm.2019.02.010

T. S. Metkus, “Pulmonary edema: MedlinePlus Medical Encyclopedia.”, 2025.

L. Ridley, “Chest Radiograph Signs Suggestive of Pericardial Disease,” American College of Cardiology, 2025.

J. G. Nam, M. Kim, J. Park, E. J. Hwang, J. H. Lee, J. H. Hong, J. M. Goo, and C. M. Park, “Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs,” Eur Respir J, vol. 57, no. 5, p. 2003061, May 2021. https://doi.org/10.1183/13993003.03061-2020

P. G. Anderson, H. Tarder-Stoll, M. Alpaslan, N. Keathley, D. L. Levin, S. Venkatesh, E. Bartel, S. Sicular, S. Howell, R. V. Lindsey, and R. M. Jones, “Deep learning improves physician accuracy in the comprehensive detection of abnormalities on chest X-rays,” Sci Rep, vol. 14, no. 1, p. 25151, Oct. 2024. https://doi.org/10.1038/s41598-024-76608-2

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 3462–3471. https://doi.org/10.1109/CVPR.2017.369

L. Guo, C. Zhou, J. Xu, C. Huang, Y. Yu, and G. Lu, “Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists with or Without Artificial Intelligence Assistance,” J Digit Imaging. Inform. med., vol. 37, no. 3, pp. 922–934, Feb. 2024. https://doi.org/10.1007/s10278-024-00990-6

D. Kvak, A. Chromcová, M. Biroš, R. Hrubý, K. Kvaková, M. Pajdaković, and P. Ovesná, “Chest X-ray Abnormality Detection by Using Artificial Intelligence: A Single-Site Retrospective Study of Deep Learning Model Performance,” BioMedInformatics, vol. 3, no. 1, Art. no. 1, Mar. 2023. https://doi.org/10.3390/biomedinformatics3010006

E. Blantz, “4 Key Challenges and Solutions to ICT Deployments for Rural Healthcare,” ICTworks, 2024.

PricewaterhouseCoopers, “How can technology accelerate the digitisation of the Indonesian healthcare sector?,” PwC, 2024.

S. Sarkar, “Overcoming Hospital Challenges with Enhanced Technology Solutions in Indonesia,” 2021.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 16, 2017, arXiv: arXiv:1704.04861, 2023. https://doi.org/10.48550/arXiv.1704.04861

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” Sep. 11, 2020, arXiv: arXiv:1905.11946. https://doi.org/10.48550/arXiv.1905.11946

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Dec. 07, 2017, arXiv: arXiv:1707.01083, 2024. https://doi.org/10.48550/arXiv.1707.01083

K. G. van Leeuwen, M. de Rooij, S. Schalekamp, B. van Ginneken, and M. J. C. M. Rutten, “How does artificial intelligence in radiology improve efficiency and health outcomes?,” Pediatr Radiol, vol. 52, no. 11, pp. 2087–2093, Oct. 2022. https://doi.org/10.1007/s00247-021-05114-8

M. Rybczak and K. Kozakiewicz, “Deep Machine Learning of MobileNet, Efficient, and Inception Models,” Algorithms, vol. 17, no. 3, Art. no. 3, Mar. 2024. https://doi.org/10.3390/a17030096

S. Kolonne, C. Fernando, H. Kumarasinghe, and D. Meedeniya, “MobileNetV2 Based Chest X-Rays Classification,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain: IEEE, Dec. 2021, pp. 57–61. https://doi.org/10.1109/DASA53625.2021.9682248

S. Akter, F. M. J. M. Shamrat, S. Chakraborty, A. Karim, and S. Azam, “COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images,” Biology (Basel), vol. 10, no. 11, p. 1174, Nov. 2021. https://doi.org/10.3390/biology10111174

S. Velu, “An efficient, lightweight MobileNetV2-based fine-tuned model for COVID-19 detection using chest X-ray images,” MBE, vol. 20, no. 5, Art. no. mbe-20-05-368, 2023. https://doi.org/10.3934/mbe.2023368

H. Iqbal, A. Khan, N. Nepal, F. Khan, and Y.-K. Moon, “Deep Learning Approaches for Chest Radiograph Interpretation: A Systematic Review,” Electronics, vol. 13, no. 23, Art. no. 23, Jan. 2024. https://doi.org/10.3390/electronics13234688

C. Gu and M. Lee, “Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images,” Bioengineering, vol. 11, no. 4, p. 406, Apr. 2024. https://doi.org/10.3390/bioengineering11040406

L. An, K. Peng, X. Yang, P. Huang, Y. Luo, P. Feng, and B. Wei, “E-TBNet: Light Deep Neural Network for Automatic Detection of Tuberculosis with X-ray DR Imaging,” Sensors, vol. 22, no. 3, p. 821, Jan. 2022. https://doi.org/10.3390/s22030821

H. Mzoughi, I. Njeh, M. B. Slima, and A. BenHamida, “Deep efficient-nets with transfer learning assisted detection of COVID-19 using chest X-ray radiology imaging,” Multimed Tools Appl, vol. 82, no. 25, pp. 39303–39325, Oct. 2023. https://doi.org/10.1007/s11042-023-15097-3

K. Kansal, T. B. Chandra, and A. Singh, “ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning,” Procedia Computer Science, vol. 235, pp. 70–80, 2024. https://doi.org/10.1016/j.procs.2024.04.007

Q. An, W. Chen, and W. Shao, “A Deep Convolutional Neural Network for Pneumonia Detection in X-ray Images with Attention Ensemble,” Diagnostics (Basel), vol. 14, no. 4, p. 390, Feb. 2024. https://doi.org/10.3390/diagnostics14040390

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” Int J Comput Vis, vol. 128, no. 2, pp. 336–359, Feb. 2020. https://doi.org/10.1007/s11263-019-01228-7

S. Suara, A. Jha, P. Sinha, and A. A. Sekh, “Is Grad-CAM Explainable in Medical Images?,” vol. 2009, 2024, pp. 124–135. https://doi.org/10.1007/978-3-031-58181-6_11

N. Le, B. Männel, M. Jarema, T. T. Luong, L. K. Bui, H. Q. Vy, and H. Schuh, “K-Fold Cross-Validation: An Effective Hyperparameter Tuning Technique in Machine Learning on GNSS Time Series for Movement Forecast,” in Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology, A. Çiner, Z. A. Ergüler, M. Bezzeghoud, M. Ustuner, M. Eshagh, H. El-Askary, A. Biswas, L. Gasperini, K.-G. Hinzen, M. Karakus, C. Comina, A. Karrech, A. Polonia, and H. I. Chaminé, Eds., in Advances in Science, Technology & Innovation. , Cham: Springer Nature Switzerland, 2024, pp. 377–382. https://doi.org/10.1007/978-3-031-43218-7_88

P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, L. Liu and M. T. Özsu, Eds., Boston, MA: Springer US, 2009, pp. 532–538. https://doi.org/10.1007/978-0-387-39940-9_565

G. Naidu, T. Zuva, and E. M. Sibanda, “A Review of Evaluation Metrics in Machine Learning Algorithms,” in Artificial Intelligence Application in Networks and Systems, R. Silhavy and P. Silhavy, Eds., Cham: Springer International Publishing, 2023, pp. 15–25. https://doi.org/10.1007/978-3-031-35314-7_2

F. Melo, “Area under the ROC Curve,” in Encyclopedia of Systems Biology, W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Eds., New York, NY: Springer, 2013, pp. 38–39. https://www.doi.org/10.1007/978-1-4419-9863-7_209

M. Gakhar and A. Aggarwal, “ThoraciNet: thoracic abnormality detection and disease classification using fusion DCNNs,” Phys Eng Sci Med, vol. 45, no. 3, pp. 961–970, Sep. 2022. https://doi.org/10.1007/s13246-022-01137-z

E. Sahin, A. Celikten, S. Demirel, A. Akpulat, K. Budak, and H. Karatas, “Pneumonia Detection in Chest X - Ray Images Using Deep Learning and Grad-CAM++ Visualization,” in 2024 Innovations in Intelligent Systems and Applications Conference (ASYU), Ankara, Turkiye: IEEE, Oct. 2024, pp. 1–5. https://doi.org/10.1109/ASYU62119.2024.10756959

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE, Jun. 2018, pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

M. Päpper, “Depthwise Separable Convolutions in PyTorch :: Päpper’s Machine Learning Blog — This blog features state of the art applications in machine learning with a lot of PyTorch samples and deep learning code. You will learn about neural network optimization and potential insights for artificial intelligence for example in the medical domain.,” Depthwise Separable Convolutions in PyTorch, 2024.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” Jul. 30, 2018, arXiv: arXiv:1807.11164. https://doi.org/10.48550/arXiv.1807.11164

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” Dec. 07, 2017, arXiv: arXiv:1707.01083. https://doi.org/10.48550/arXiv.1707.01083

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” Dec. 25, 2017, arXiv: arXiv:1711.05225. https://doi.org/10.48550/arXiv.1711.05225

Roboflow, “Chest abnormalities > Browse,” Roboflow.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License