Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 3, August 2025
  4. Articles

Issue

Vol. 10, No. 3, August 2025

Issue Published : Jun 13, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Intelligent Traffic Management System Using Mask Regions-Convolutional Neural Network

https://doi.org/10.22219/kinetik.v10i3.2233
Muhammad Kemal Pasha
UIN Sunan Gunung Djati Bandung
Aldy Rialdy Atmadja
UIN Sunan Gunung Djati Bandung
Muhammad Deden Firdaus
UIN Sunan Gunung Djati Bandung

Corresponding Author(s) : Muhammad Kemal Pasha

1217050098@student.uinsgd.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 3, August 2025
Article Published : Jun 13, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Urban centers worldwide continue to face challenges in traffic management due to outdated traffic signal infrastructure. This study aims to develop an intelligent traffic management system by implementing the Mask Regions-Convolutional Neural Network (MR-CNN) algorithm for real-time vehicle detection and traffic flow optimization. Utilizing the CRISP-DM framework, this research processes CCTV footage from the Pasteur-Pasopati intersection in Bandung to identify and quantify vehicles dynamically. The proposed system leverages an enhanced Mask R-CNN model with a ResNet-50 FPN backbone to improve detection accuracy. Experimental results demonstrate an 80% vehicle detection accuracy, with a macro-average precision of 0.89, recall of 0.83, and an F1-score of 0.82. These findings highlight the system’s capability to replace conventional fixed-time traffic signals with a more adaptive approach, adjusting green light durations based on real-time traffic density. The proposed solution has significant practical implications for reducing congestion and improving traffic flow efficiency in urban environments.

Keywords

Traffic Engineering R-CNN Mask R-CNN Deep Learning Traffic Management
Pasha, M. K., Atmadja, A. R., & Firdaus, M. D. (2025). Intelligent Traffic Management System Using Mask Regions-Convolutional Neural Network. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(3), 329-338. https://doi.org/10.22219/kinetik.v10i3.2233
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. B. Pishue, “2021 INRIX Global Traffic Scorecard,” p. 21, 2021.
  2. B. Pishue, “2021 INRIX Global Traffic Scorecard,” p. 23, 2021.
  3. Badan Pusat Statistik, “Jumlah Kendaraan Indonesia 2022.” Accessed: Jun. 12, 2024.
  4. K. Lubis, “Analysis of the Characteristics of Public Transportation Modes to Users of Land Transportation Modes as City Transportation Within the Province,” Online, 2019. https://doi.org/10.30743/but.v15i1.1877
  5. J. Dwijoko Ansusanto and S. Tanggu, “Analisis Kinerja Dan Manajemen Pada Simpang Dengan Derajat Kejenuhan Tinggi Performance Analysis and Management on Saturated Traffic Intersection.”
  6. J. Li, Y. Zhang, and Y. Chen, “A Self-Adaptive Traffic Light Control System Based on Speed of Vehicles,” in 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), IEEE, Aug. 2016, pp. 382–388. https://doi.org/10.1109/QRS-C.2016.58
  7. A. Muralidharan, R. Pedarsani, and P. Varaiya, “Analysis of fixed-time control,” Transportation Research Part B: Methodological, vol. 73, pp. 81–90, Mar. 2015. https://doi.org/10.1016/j.trb.2014.12.002
  8. S. Zhao, G. Qi, P. Li, and W. Guan, “The aggressive driving performance caused by congestion based on behavior and EEG analysis,” J Safety Res, vol. 91, pp. 381–392, Dec. 2024. https://doi.org/10.1016/j.jsr.2024.10.004
  9. Z. Fahrunnisa and R. Arief Setyawan, “Adaptive Traffic Light Signal Control Using Fuzzy Logic Based on Real-Time Vehicle Detection from Video Surveillance,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 2, pp. 235–251, 2024. https://doi.org/10.26555/jiteki.v10i2.28712
  10. F. Zahwa, C.-T. Cheng, and M. Simic, “Novel Intelligent Traffic Light Controller Design,” Machines, vol. 12, no. 7, p. 469, Jul. 2024. https://doi.org/10.3390/machines12070469
  11. A. N. Aulia Yusuf, A. Setyo Arifin, and F. Yuli Zulkifli, “Recent development of smart traffic lights,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, p. 224, Mar. 2021. https://doi.org/10.11591/ijai.v10.i1.pp224-233
  12. et al Abigail See, “Mask-RCNN for object detection and instance segmentation on Keras and TensorFlow.” Accessed: Jun. 19, 2024.
  13. S. Sumahasan, “Object Detection using Deep Learning Algorithm CNN,” Int J Res Appl Sci Eng Technol, vol. 8, no. 7, pp. 1578–1584, Jul. 2020. https://doi.org/10.22214/ijraset.2020.30594
  14. M. Li, H. Zhu, H. Chen, L. Xue, and T. Gao, “Research on Object Detection Algorithm Based on Deep Learning,” J Phys Conf Ser, vol. 1995, no. 1, p. 012046, Aug. 2021. https://doi.org/10.1088/1742-6596/1995/1/012046
  15. F. Charli, H. Syaputra, M. Akbar3, S. Sauda, and F. Panjaitan, “Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird,” 2020. https://doi.org/10.51519/journalita.volume1.isssue3.year2020.page185-197
  16. L. Du, R. Zhang, and X. Wang, “Overview of two-stage object detection algorithms,” J Phys Conf Ser, vol. 1544, no. 1, p. 012033, May 2020. https://doi.org/10.1088/1742-6596/1544/1/012033
  17. Z. Gongguo and W. Junhao, “An improved small target detection method based on Yolo V3,” in Proceedings - 2021 International Conference on Electronics, Circuits and Information Engineering, ECIE 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 220–223. https://doi.org/10.1109/ECIE52353.2021.00054
  18. G. ÇINARER, “Deep Learning Based Traffic Sign Recognition Using YOLO Algorithm,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 12, no. 1, pp. 219–229, Jan. 2024. https://doi.org/10.29130/dubited.1214901
  19. H. Tran Ngoc, K. Hoang Nguyen, H. Khanh Hua, H. Vu Nhu Nguyen, and L.-D. Quach, “Optimizing YOLO Performance for Traffic Light Detection and End-to-End Steering Control for Autonomous Vehicles in Gazebo-ROS2.” https://dx.doi.org/10.14569/IJACSA.2023.0140752
  20. H. Lai, L. Chen, W. Liu, Z. Yan, and S. Ye, “STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments,” Sensors, vol. 23, no. 11, Jun. 2023. https://doi.org/10.3390/s23115307
  21. M. Hidayat, Z. Bilfaqih, Y. A. Hady, and M. A. Tampubolon, “Smart Traffic Light Using YOLO Based Camera with Deep Reinforcement Learning Algorithm,” 2023. https://doi.org/10.12962/jaree.v7i1.335
  22. A. Vidali, L. Crociani, G. Vizzari, and S. Bandini, “A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management,” 2019.
  23. C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput Sci, vol. 181, pp. 526–534, 2021. https://doi.org/10.1016/j.procs.2021.01.199
  24. S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP‐DM Framework for Teaching Business Analytics,” Decision Sciences Journal of Innovative Education, vol. 18, no. 4, pp. 612–634, Oct. 2020. https://doi.org/10.1111/dsji.12222
  25. K. Abedi, J. Codjoe, R. Thapa, and V. Gopu, “Making Data-Driven Transportation Decisions for Freight Operations,” J Transp Technol, vol. 13, no. 03, pp. 411–442, 2023. https://doi.org/10.4236/jtts.2023.133020
  26. S. Zia, B. Yuksel, D. Yuret, and Y. Yemez, “RGB-D Object Recognition Using Deep Convolutional Neural Networks,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, Oct. 2017, pp. 887–894. https://doi.org/10.1109/ICCVW.2017.109
  27. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020. https://doi.org/10.48550/arXiv.2004.10934
  28. M. A. Khasawneh and A. Awasthi, “Intelligent Meta-Heuristic-Based Optimization of Traffic Light Timing Using Artificial Intelligence Techniques,” Electronics (Basel), vol. 12, no. 24, p. 4968, Dec. 2023. https://doi.org/10.3390/electronics12244968
Read More

References


B. Pishue, “2021 INRIX Global Traffic Scorecard,” p. 21, 2021.

B. Pishue, “2021 INRIX Global Traffic Scorecard,” p. 23, 2021.

Badan Pusat Statistik, “Jumlah Kendaraan Indonesia 2022.” Accessed: Jun. 12, 2024.

K. Lubis, “Analysis of the Characteristics of Public Transportation Modes to Users of Land Transportation Modes as City Transportation Within the Province,” Online, 2019. https://doi.org/10.30743/but.v15i1.1877

J. Dwijoko Ansusanto and S. Tanggu, “Analisis Kinerja Dan Manajemen Pada Simpang Dengan Derajat Kejenuhan Tinggi Performance Analysis and Management on Saturated Traffic Intersection.”

J. Li, Y. Zhang, and Y. Chen, “A Self-Adaptive Traffic Light Control System Based on Speed of Vehicles,” in 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), IEEE, Aug. 2016, pp. 382–388. https://doi.org/10.1109/QRS-C.2016.58

A. Muralidharan, R. Pedarsani, and P. Varaiya, “Analysis of fixed-time control,” Transportation Research Part B: Methodological, vol. 73, pp. 81–90, Mar. 2015. https://doi.org/10.1016/j.trb.2014.12.002

S. Zhao, G. Qi, P. Li, and W. Guan, “The aggressive driving performance caused by congestion based on behavior and EEG analysis,” J Safety Res, vol. 91, pp. 381–392, Dec. 2024. https://doi.org/10.1016/j.jsr.2024.10.004

Z. Fahrunnisa and R. Arief Setyawan, “Adaptive Traffic Light Signal Control Using Fuzzy Logic Based on Real-Time Vehicle Detection from Video Surveillance,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 2, pp. 235–251, 2024. https://doi.org/10.26555/jiteki.v10i2.28712

F. Zahwa, C.-T. Cheng, and M. Simic, “Novel Intelligent Traffic Light Controller Design,” Machines, vol. 12, no. 7, p. 469, Jul. 2024. https://doi.org/10.3390/machines12070469

A. N. Aulia Yusuf, A. Setyo Arifin, and F. Yuli Zulkifli, “Recent development of smart traffic lights,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, p. 224, Mar. 2021. https://doi.org/10.11591/ijai.v10.i1.pp224-233

et al Abigail See, “Mask-RCNN for object detection and instance segmentation on Keras and TensorFlow.” Accessed: Jun. 19, 2024.

S. Sumahasan, “Object Detection using Deep Learning Algorithm CNN,” Int J Res Appl Sci Eng Technol, vol. 8, no. 7, pp. 1578–1584, Jul. 2020. https://doi.org/10.22214/ijraset.2020.30594

M. Li, H. Zhu, H. Chen, L. Xue, and T. Gao, “Research on Object Detection Algorithm Based on Deep Learning,” J Phys Conf Ser, vol. 1995, no. 1, p. 012046, Aug. 2021. https://doi.org/10.1088/1742-6596/1995/1/012046

F. Charli, H. Syaputra, M. Akbar3, S. Sauda, and F. Panjaitan, “Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird,” 2020. https://doi.org/10.51519/journalita.volume1.isssue3.year2020.page185-197

L. Du, R. Zhang, and X. Wang, “Overview of two-stage object detection algorithms,” J Phys Conf Ser, vol. 1544, no. 1, p. 012033, May 2020. https://doi.org/10.1088/1742-6596/1544/1/012033

Z. Gongguo and W. Junhao, “An improved small target detection method based on Yolo V3,” in Proceedings - 2021 International Conference on Electronics, Circuits and Information Engineering, ECIE 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 220–223. https://doi.org/10.1109/ECIE52353.2021.00054

G. ÇINARER, “Deep Learning Based Traffic Sign Recognition Using YOLO Algorithm,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 12, no. 1, pp. 219–229, Jan. 2024. https://doi.org/10.29130/dubited.1214901

H. Tran Ngoc, K. Hoang Nguyen, H. Khanh Hua, H. Vu Nhu Nguyen, and L.-D. Quach, “Optimizing YOLO Performance for Traffic Light Detection and End-to-End Steering Control for Autonomous Vehicles in Gazebo-ROS2.” https://dx.doi.org/10.14569/IJACSA.2023.0140752

H. Lai, L. Chen, W. Liu, Z. Yan, and S. Ye, “STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments,” Sensors, vol. 23, no. 11, Jun. 2023. https://doi.org/10.3390/s23115307

M. Hidayat, Z. Bilfaqih, Y. A. Hady, and M. A. Tampubolon, “Smart Traffic Light Using YOLO Based Camera with Deep Reinforcement Learning Algorithm,” 2023. https://doi.org/10.12962/jaree.v7i1.335

A. Vidali, L. Crociani, G. Vizzari, and S. Bandini, “A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management,” 2019.

C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput Sci, vol. 181, pp. 526–534, 2021. https://doi.org/10.1016/j.procs.2021.01.199

S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP‐DM Framework for Teaching Business Analytics,” Decision Sciences Journal of Innovative Education, vol. 18, no. 4, pp. 612–634, Oct. 2020. https://doi.org/10.1111/dsji.12222

K. Abedi, J. Codjoe, R. Thapa, and V. Gopu, “Making Data-Driven Transportation Decisions for Freight Operations,” J Transp Technol, vol. 13, no. 03, pp. 411–442, 2023. https://doi.org/10.4236/jtts.2023.133020

S. Zia, B. Yuksel, D. Yuret, and Y. Yemez, “RGB-D Object Recognition Using Deep Convolutional Neural Networks,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), IEEE, Oct. 2017, pp. 887–894. https://doi.org/10.1109/ICCVW.2017.109

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020. https://doi.org/10.48550/arXiv.2004.10934

M. A. Khasawneh and A. Awasthi, “Intelligent Meta-Heuristic-Based Optimization of Traffic Light Timing Using Artificial Intelligence Techniques,” Electronics (Basel), vol. 12, no. 24, p. 4968, Dec. 2023. https://doi.org/10.3390/electronics12244968

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License