Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 3, August 2025
  4. Articles

Issue

Vol. 10, No. 3, August 2025

Issue Published : Jun 13, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Classification of Arrhythmia Electrocardiogram Signals Using Kernel Principal Component Analysis and Naive Bayes

https://doi.org/10.22219/kinetik.v10i3.2219
Melinda Melinda
Universitas Syiah Kuala
https://orcid.org/0000-0001-9082-6639
Farhan
Universitas Syiah Kuala
Muhammad Irhamsyah
Universitas Syiah Kuala
Rizka Miftahujjannah
Universitas Syiah Kuala
Donata D Acula
University of Santo Tomas
Yunidar Yunidar
Universitas Syiah Kuala

Corresponding Author(s) : Melinda Melinda

melinda@usk.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 3, August 2025
Article Published : Jun 13, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Arrhythmia is a cardiovascular disorder commonly detected through electrocardiogram (ECG) signal analysis. Classifying arrhythmias based on ECG signals remains challenging due to signal complexity and individual variability. This study aims to develop a more accurate and efficient method for arrhythmia classification. The proposed method utilizes Kernel Principal Component Analysis (KPCA) and the Naive Bayes algorithm for classifying arrhythmic ECG signals. KPCA is chosen because of its ability to reduce data dimensionality, which allows complex ECG signal processing and improves classification accuracy by minimizing noise. Naive Bayes algorithm is chosen because of its simplicity and computational speed, as well as its effective performance even with limited data. ECG signals are processed with KPCA to reduce data dimensionality and extract relevant features. The Naive Bayes algorithm is then applied to classify the ECG signals into four categories: Premature Atrial Contraction (PAC), Premature Ventricular Contraction (PVC), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). Model performance evaluation employs metrics such as accuracy, sensitivity, specificity, precision, and F1-score. The Naive Bayes model achieves an overall accuracy of 97.67%, with the highest performance observed in the RB class at 99.33%. Additionally, the F1-scores for all classes range from 96.62% to 98.57%, demonstrating the model's capability to detect arrhythmias effectively. These results indicate that the combination of KPCA and Naive Bayes is effective for classifying arrhythmic ECG signals.

Keywords

ECG Signals KPCA Naive bayes Arrhythmia Classification
Melinda, M., Farhan, Irhamsyah, M. ., Miftahujjannah, R. ., D Acula, D., & Yunidar, Y. (2025). Classification of Arrhythmia Electrocardiogram Signals Using Kernel Principal Component Analysis and Naive Bayes . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(3). https://doi.org/10.22219/kinetik.v10i3.2219
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Mohonta, S.C., Motin, M.A. and Kumar, D.K. (2022) 'Electrocardiogram based arrhythmia classification using wavelet transform with Deep Learning Model', Sensing and Bio-Sensing Research, 37, p. 100502—doi:10.1016/j.sbsr.2022.100502.
  2. Irfan, S. et al. (2022) ‘Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique’, Sensors, 22(15), p. 5606. doi:10.3390/s22155606.
  3. Usha Kumari, Ch. et al. (2021) ‘An automated detection of heart arrhythmias using machine learning technique: SVM’, Materials Today: Proceedings, 45, pp. 1393–1398. doi:10.1016/j.matpr.2020.07.088.
  4. Sraitih, M., Jabrane, Y. and Hajjam El Hassani, A. (2021b) ‘An automated system for ECG arrhythmia detection using machine learning techniques’, Journal of Clinical Medicine, 10(22), p. 5450. doi:10.3390/jcm10225450.
  5. Park, J. et al. (2023) ‘Self-attention LSTM-FCN model for Arrhythmia Classification and Uncertainty Assessment’, Artificial Intelligence in Medicine, 142, p. 102570. doi:10.1016/j.artmed.2023.102570.
  6. Hassaballah, M. et al. (2023) ‘ECG Heartbeat Classification using machine learning and metaheuristic optimization for Smart Healthcare Systems’, Bioengineering, 10(4), p. 429. doi:10.3390/bioengineering10040429.
  7. Mian Qaisar, S. et al. (2023) ‘Arrhythmia classification using multi-rate processing metaheuristic optimization and variational mode decomposition’, Journal of King Saud University - Computer and Information Sciences, 35(1), pp. 26–37. doi:10.1016/j.jksuci.2022.05.009.
  8. Sarker, I.H. (2021) ‘Machine learning: Algorithms, real-world applications and Research Directions’, SN Computer Science, 2(3). doi:10.1007/s42979-021-00592-x.
  9. Zhuang, S. et al. (2021) ‘Improved ecg‐derived respiration using empirical wavelet transform and kernel principal component analysis’, Computational Intelligence and Neuroscience, 2021(1). doi:10.1155/2021/1360414.
  10. Singh, R., Rajpal, N. and Mehta, R. (2020) ‘Wavelet and kernel dimensional reduction on arrhythmia classification of ECG Signals’, EAI Endorsed Transactions on Scalable Information Systems, 7(26), p. 163095. doi:10.4108/eai.13-7-2018.163095.
  11. Zhu, J. et al. (2022) ‘ECG Heartbeat Classification based on combined features extracted by PCA, KPCA, AKPCA and DWT’, 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), pp. 155–159. doi:10.1109/cbms55023.2022.00034.
  12. T.Sanamdikar, S. et al. (2023) ‘KPCA and SVR-based cardiac arrhythmia classification on Electrocardiography Waves’, 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 315–321. doi:10.1109/icssit55814.2023.10061047.
  13. Xi, J. et al. (2020) ‘The research on feature extraction method of ECG signal based on KPCA dimension reduction’, Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 500–504. doi:10.1145/3383972.3384040.
  14. Madonna, P. et al. (2021) 'Classification of ECG signals using the naïve Bayes classification method and its implementation in Android-based Smart Health Care', 2021 International Conference on Computer Science and Engineering (IC2SE), pp. 1–7. doi:10.1109/ic2se52832.2021.9791475.
  15. Anandha Praba, R. et al. (2022) ‘Efficient cardiac arrhythmia detection using machine learning algorithms’, Journal of Physics: Conference Series, 2318(1), p. 012011. doi:10.1088/1742-6596/2318/1/012011.
  16. Afadar, Y. et al. (2020) 'Heart arrhythmia abnormality classification using machine learning', 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (SCI), pp. 1–5. doi:10.1109/CCCI49893.2020.9256763.
  17. Rahul, J. et al. (2021) ‘An improved cardiac arrhythmia classification using an RR interval-based approach’, Biocybernetics and Biomedical Engineering, 41(2), pp. 656–666. doi:10.1016/j.bbe.2021.04.004
  18. Rayar, V. et al. (2022) 'Comparison of machine learning approaches for Classification of cardiac diseases', 2022 International Conference on Futuristic Technologies (INCOFT), pp. 1–4. doi:10.1109/INCOFT55651.2022.10094525.
  19. Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917.
  20. Wang, Y. et al. (2023) ‘Arrhythmia classification algorithm based on multi-head self-attention mechanism’, Biomedical Signal Processing and Control, 79, p. 104206. doi:10.1016/j.bspc.2022.104206.
  21. Dias, F.M. et al. (2021) 'Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm', Computer Methods and Programs in Biomedicine, 202, p. 105948—doi:10.1016/j.cmpb.2021.105948.
  22. Khalaf, A.J. and Mohammed, S.J. (2021) 'Verification and comparison of MIT-BiH arrhythmia database based on a number of beats', International Journal of Electrical and Computer Engineering (IJECE), 11(6), p. 4950. doi:10.11591/ijece.v11i6.pp4950-4961.
  23. Rehman, A. et al. (2020) 'Performance analysis of PCA, sparse PCA, Kernel PCA, and Incremental PCA algorithms for heart failure prediction', 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5. doi:10.1109/icecce49384.2020.9179199.
  24. Djoufack Nkengfack, L.C. et al. (2021) ‘A comparison study of polynomial-based PCA, KPCA, Lda, and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines', Informatics in Medicine Unlocked, 26, p. 100721. doi:10.1016/j.imu.2021.100721.
  25. Abdullah, A. et al. (2023) ‘Stacked LSTM and kernel-PCA-based ensemble learning for Cardiac Arrhythmia Classification’, International Journal of Advanced Computer Science and Applications, 14(9). doi:10.14569/ijacsa.2023.0140905.
  26. Wickramasinghe, I. and Kalutarage, H. (2020) 'Naive Bayes: Applications, variations, and vulnerabilities: A review of the literature with code snippets for implementation', Soft Computing, 25(3), pp. 2277–2293. doi:10.1007/s00500-020-05297-6.
  27. Deka, D. (2020) ‘Detection of congestive heart failure using naive Bayes classifier’, International Journal of Engineering and Advanced Technology, 9(3), pp. 4154–4159. doi:10.35940/ijeat.c6623.029320.
  28. Yousef, M. and Khaled Batiha, Prof. (2021) 'Heart disease prediction model using naive Bayes algorithm and machine learning techniques', International Journal of Engineering & Technology, 10(1), pp. 46–56. doi:10.14419/ijet.v10i1.31310.
  29. Xu, J., Zhang, Y. and Miao, D. (2020) ‘Three-way confusion matrix for classification: A measure driven view’, Information Sciences, 507, pp. 772–794. doi:10.1016/j.ins.2019.06.064.
  30. Valero-Carreras, D., Alcaraz, J. and Landete, M. (2023) ‘Comparing two SVM models through different metrics based on the confusion matrix’, Computers & Operations Research, 152, p. 106131. doi:10.1016/j.cor.2022.106131.
  31. Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917
  32. A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of Fourier–
  33. Bessel expansion and LSTM,” Comput Biol Med, vol. 120, May 2020. https://doi.org/10.1016/j.compbiomed.2020.103753
Read More

References


Mohonta, S.C., Motin, M.A. and Kumar, D.K. (2022) 'Electrocardiogram based arrhythmia classification using wavelet transform with Deep Learning Model', Sensing and Bio-Sensing Research, 37, p. 100502—doi:10.1016/j.sbsr.2022.100502.

Irfan, S. et al. (2022) ‘Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique’, Sensors, 22(15), p. 5606. doi:10.3390/s22155606.

Usha Kumari, Ch. et al. (2021) ‘An automated detection of heart arrhythmias using machine learning technique: SVM’, Materials Today: Proceedings, 45, pp. 1393–1398. doi:10.1016/j.matpr.2020.07.088.

Sraitih, M., Jabrane, Y. and Hajjam El Hassani, A. (2021b) ‘An automated system for ECG arrhythmia detection using machine learning techniques’, Journal of Clinical Medicine, 10(22), p. 5450. doi:10.3390/jcm10225450.

Park, J. et al. (2023) ‘Self-attention LSTM-FCN model for Arrhythmia Classification and Uncertainty Assessment’, Artificial Intelligence in Medicine, 142, p. 102570. doi:10.1016/j.artmed.2023.102570.

Hassaballah, M. et al. (2023) ‘ECG Heartbeat Classification using machine learning and metaheuristic optimization for Smart Healthcare Systems’, Bioengineering, 10(4), p. 429. doi:10.3390/bioengineering10040429.

Mian Qaisar, S. et al. (2023) ‘Arrhythmia classification using multi-rate processing metaheuristic optimization and variational mode decomposition’, Journal of King Saud University - Computer and Information Sciences, 35(1), pp. 26–37. doi:10.1016/j.jksuci.2022.05.009.

Sarker, I.H. (2021) ‘Machine learning: Algorithms, real-world applications and Research Directions’, SN Computer Science, 2(3). doi:10.1007/s42979-021-00592-x.

Zhuang, S. et al. (2021) ‘Improved ecg‐derived respiration using empirical wavelet transform and kernel principal component analysis’, Computational Intelligence and Neuroscience, 2021(1). doi:10.1155/2021/1360414.

Singh, R., Rajpal, N. and Mehta, R. (2020) ‘Wavelet and kernel dimensional reduction on arrhythmia classification of ECG Signals’, EAI Endorsed Transactions on Scalable Information Systems, 7(26), p. 163095. doi:10.4108/eai.13-7-2018.163095.

Zhu, J. et al. (2022) ‘ECG Heartbeat Classification based on combined features extracted by PCA, KPCA, AKPCA and DWT’, 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), pp. 155–159. doi:10.1109/cbms55023.2022.00034.

T.Sanamdikar, S. et al. (2023) ‘KPCA and SVR-based cardiac arrhythmia classification on Electrocardiography Waves’, 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 315–321. doi:10.1109/icssit55814.2023.10061047.

Xi, J. et al. (2020) ‘The research on feature extraction method of ECG signal based on KPCA dimension reduction’, Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 500–504. doi:10.1145/3383972.3384040.

Madonna, P. et al. (2021) 'Classification of ECG signals using the naïve Bayes classification method and its implementation in Android-based Smart Health Care', 2021 International Conference on Computer Science and Engineering (IC2SE), pp. 1–7. doi:10.1109/ic2se52832.2021.9791475.

Anandha Praba, R. et al. (2022) ‘Efficient cardiac arrhythmia detection using machine learning algorithms’, Journal of Physics: Conference Series, 2318(1), p. 012011. doi:10.1088/1742-6596/2318/1/012011.

Afadar, Y. et al. (2020) 'Heart arrhythmia abnormality classification using machine learning', 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (SCI), pp. 1–5. doi:10.1109/CCCI49893.2020.9256763.

Rahul, J. et al. (2021) ‘An improved cardiac arrhythmia classification using an RR interval-based approach’, Biocybernetics and Biomedical Engineering, 41(2), pp. 656–666. doi:10.1016/j.bbe.2021.04.004

Rayar, V. et al. (2022) 'Comparison of machine learning approaches for Classification of cardiac diseases', 2022 International Conference on Futuristic Technologies (INCOFT), pp. 1–4. doi:10.1109/INCOFT55651.2022.10094525.

Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917.

Wang, Y. et al. (2023) ‘Arrhythmia classification algorithm based on multi-head self-attention mechanism’, Biomedical Signal Processing and Control, 79, p. 104206. doi:10.1016/j.bspc.2022.104206.

Dias, F.M. et al. (2021) 'Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm', Computer Methods and Programs in Biomedicine, 202, p. 105948—doi:10.1016/j.cmpb.2021.105948.

Khalaf, A.J. and Mohammed, S.J. (2021) 'Verification and comparison of MIT-BiH arrhythmia database based on a number of beats', International Journal of Electrical and Computer Engineering (IJECE), 11(6), p. 4950. doi:10.11591/ijece.v11i6.pp4950-4961.

Rehman, A. et al. (2020) 'Performance analysis of PCA, sparse PCA, Kernel PCA, and Incremental PCA algorithms for heart failure prediction', 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5. doi:10.1109/icecce49384.2020.9179199.

Djoufack Nkengfack, L.C. et al. (2021) ‘A comparison study of polynomial-based PCA, KPCA, Lda, and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines', Informatics in Medicine Unlocked, 26, p. 100721. doi:10.1016/j.imu.2021.100721.

Abdullah, A. et al. (2023) ‘Stacked LSTM and kernel-PCA-based ensemble learning for Cardiac Arrhythmia Classification’, International Journal of Advanced Computer Science and Applications, 14(9). doi:10.14569/ijacsa.2023.0140905.

Wickramasinghe, I. and Kalutarage, H. (2020) 'Naive Bayes: Applications, variations, and vulnerabilities: A review of the literature with code snippets for implementation', Soft Computing, 25(3), pp. 2277–2293. doi:10.1007/s00500-020-05297-6.

Deka, D. (2020) ‘Detection of congestive heart failure using naive Bayes classifier’, International Journal of Engineering and Advanced Technology, 9(3), pp. 4154–4159. doi:10.35940/ijeat.c6623.029320.

Yousef, M. and Khaled Batiha, Prof. (2021) 'Heart disease prediction model using naive Bayes algorithm and machine learning techniques', International Journal of Engineering & Technology, 10(1), pp. 46–56. doi:10.14419/ijet.v10i1.31310.

Xu, J., Zhang, Y. and Miao, D. (2020) ‘Three-way confusion matrix for classification: A measure driven view’, Information Sciences, 507, pp. 772–794. doi:10.1016/j.ins.2019.06.064.

Valero-Carreras, D., Alcaraz, J. and Landete, M. (2023) ‘Comparing two SVM models through different metrics based on the confusion matrix’, Computers & Operations Research, 152, p. 106131. doi:10.1016/j.cor.2022.106131.

Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917

A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of Fourier–

Bessel expansion and LSTM,” Comput Biol Med, vol. 120, May 2020. https://doi.org/10.1016/j.compbiomed.2020.103753

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License