
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Classification of Arrhythmia Electrocardiogram Signals Using Kernel Principal Component Analysis and Naive Bayes
Corresponding Author(s) : Melinda Melinda
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 3, August 2025
Abstract
Arrhythmia is a cardiovascular disorder commonly detected through electrocardiogram (ECG) signal analysis. Classifying arrhythmias based on ECG signals remains challenging due to signal complexity and individual variability. This study aims to develop a more accurate and efficient method for arrhythmia classification. The proposed method utilizes Kernel Principal Component Analysis (KPCA) and the Naive Bayes algorithm for classifying arrhythmic ECG signals. KPCA is chosen because of its ability to reduce data dimensionality, which allows complex ECG signal processing and improves classification accuracy by minimizing noise. Naive Bayes algorithm is chosen because of its simplicity and computational speed, as well as its effective performance even with limited data. ECG signals are processed with KPCA to reduce data dimensionality and extract relevant features. The Naive Bayes algorithm is then applied to classify the ECG signals into four categories: Premature Atrial Contraction (PAC), Premature Ventricular Contraction (PVC), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). Model performance evaluation employs metrics such as accuracy, sensitivity, specificity, precision, and F1-score. The Naive Bayes model achieves an overall accuracy of 97.67%, with the highest performance observed in the RB class at 99.33%. Additionally, the F1-scores for all classes range from 96.62% to 98.57%, demonstrating the model's capability to detect arrhythmias effectively. These results indicate that the combination of KPCA and Naive Bayes is effective for classifying arrhythmic ECG signals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Mohonta, S.C., Motin, M.A. and Kumar, D.K. (2022) 'Electrocardiogram based arrhythmia classification using wavelet transform with Deep Learning Model', Sensing and Bio-Sensing Research, 37, p. 100502—doi:10.1016/j.sbsr.2022.100502.
- Irfan, S. et al. (2022) ‘Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique’, Sensors, 22(15), p. 5606. doi:10.3390/s22155606.
- Usha Kumari, Ch. et al. (2021) ‘An automated detection of heart arrhythmias using machine learning technique: SVM’, Materials Today: Proceedings, 45, pp. 1393–1398. doi:10.1016/j.matpr.2020.07.088.
- Sraitih, M., Jabrane, Y. and Hajjam El Hassani, A. (2021b) ‘An automated system for ECG arrhythmia detection using machine learning techniques’, Journal of Clinical Medicine, 10(22), p. 5450. doi:10.3390/jcm10225450.
- Park, J. et al. (2023) ‘Self-attention LSTM-FCN model for Arrhythmia Classification and Uncertainty Assessment’, Artificial Intelligence in Medicine, 142, p. 102570. doi:10.1016/j.artmed.2023.102570.
- Hassaballah, M. et al. (2023) ‘ECG Heartbeat Classification using machine learning and metaheuristic optimization for Smart Healthcare Systems’, Bioengineering, 10(4), p. 429. doi:10.3390/bioengineering10040429.
- Mian Qaisar, S. et al. (2023) ‘Arrhythmia classification using multi-rate processing metaheuristic optimization and variational mode decomposition’, Journal of King Saud University - Computer and Information Sciences, 35(1), pp. 26–37. doi:10.1016/j.jksuci.2022.05.009.
- Sarker, I.H. (2021) ‘Machine learning: Algorithms, real-world applications and Research Directions’, SN Computer Science, 2(3). doi:10.1007/s42979-021-00592-x.
- Zhuang, S. et al. (2021) ‘Improved ecg‐derived respiration using empirical wavelet transform and kernel principal component analysis’, Computational Intelligence and Neuroscience, 2021(1). doi:10.1155/2021/1360414.
- Singh, R., Rajpal, N. and Mehta, R. (2020) ‘Wavelet and kernel dimensional reduction on arrhythmia classification of ECG Signals’, EAI Endorsed Transactions on Scalable Information Systems, 7(26), p. 163095. doi:10.4108/eai.13-7-2018.163095.
- Zhu, J. et al. (2022) ‘ECG Heartbeat Classification based on combined features extracted by PCA, KPCA, AKPCA and DWT’, 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), pp. 155–159. doi:10.1109/cbms55023.2022.00034.
- T.Sanamdikar, S. et al. (2023) ‘KPCA and SVR-based cardiac arrhythmia classification on Electrocardiography Waves’, 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 315–321. doi:10.1109/icssit55814.2023.10061047.
- Xi, J. et al. (2020) ‘The research on feature extraction method of ECG signal based on KPCA dimension reduction’, Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 500–504. doi:10.1145/3383972.3384040.
- Madonna, P. et al. (2021) 'Classification of ECG signals using the naïve Bayes classification method and its implementation in Android-based Smart Health Care', 2021 International Conference on Computer Science and Engineering (IC2SE), pp. 1–7. doi:10.1109/ic2se52832.2021.9791475.
- Anandha Praba, R. et al. (2022) ‘Efficient cardiac arrhythmia detection using machine learning algorithms’, Journal of Physics: Conference Series, 2318(1), p. 012011. doi:10.1088/1742-6596/2318/1/012011.
- Afadar, Y. et al. (2020) 'Heart arrhythmia abnormality classification using machine learning', 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (SCI), pp. 1–5. doi:10.1109/CCCI49893.2020.9256763.
- Rahul, J. et al. (2021) ‘An improved cardiac arrhythmia classification using an RR interval-based approach’, Biocybernetics and Biomedical Engineering, 41(2), pp. 656–666. doi:10.1016/j.bbe.2021.04.004
- Rayar, V. et al. (2022) 'Comparison of machine learning approaches for Classification of cardiac diseases', 2022 International Conference on Futuristic Technologies (INCOFT), pp. 1–4. doi:10.1109/INCOFT55651.2022.10094525.
- Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917.
- Wang, Y. et al. (2023) ‘Arrhythmia classification algorithm based on multi-head self-attention mechanism’, Biomedical Signal Processing and Control, 79, p. 104206. doi:10.1016/j.bspc.2022.104206.
- Dias, F.M. et al. (2021) 'Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm', Computer Methods and Programs in Biomedicine, 202, p. 105948—doi:10.1016/j.cmpb.2021.105948.
- Khalaf, A.J. and Mohammed, S.J. (2021) 'Verification and comparison of MIT-BiH arrhythmia database based on a number of beats', International Journal of Electrical and Computer Engineering (IJECE), 11(6), p. 4950. doi:10.11591/ijece.v11i6.pp4950-4961.
- Rehman, A. et al. (2020) 'Performance analysis of PCA, sparse PCA, Kernel PCA, and Incremental PCA algorithms for heart failure prediction', 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5. doi:10.1109/icecce49384.2020.9179199.
- Djoufack Nkengfack, L.C. et al. (2021) ‘A comparison study of polynomial-based PCA, KPCA, Lda, and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines', Informatics in Medicine Unlocked, 26, p. 100721. doi:10.1016/j.imu.2021.100721.
- Abdullah, A. et al. (2023) ‘Stacked LSTM and kernel-PCA-based ensemble learning for Cardiac Arrhythmia Classification’, International Journal of Advanced Computer Science and Applications, 14(9). doi:10.14569/ijacsa.2023.0140905.
- Wickramasinghe, I. and Kalutarage, H. (2020) 'Naive Bayes: Applications, variations, and vulnerabilities: A review of the literature with code snippets for implementation', Soft Computing, 25(3), pp. 2277–2293. doi:10.1007/s00500-020-05297-6.
- Deka, D. (2020) ‘Detection of congestive heart failure using naive Bayes classifier’, International Journal of Engineering and Advanced Technology, 9(3), pp. 4154–4159. doi:10.35940/ijeat.c6623.029320.
- Yousef, M. and Khaled Batiha, Prof. (2021) 'Heart disease prediction model using naive Bayes algorithm and machine learning techniques', International Journal of Engineering & Technology, 10(1), pp. 46–56. doi:10.14419/ijet.v10i1.31310.
- Xu, J., Zhang, Y. and Miao, D. (2020) ‘Three-way confusion matrix for classification: A measure driven view’, Information Sciences, 507, pp. 772–794. doi:10.1016/j.ins.2019.06.064.
- Valero-Carreras, D., Alcaraz, J. and Landete, M. (2023) ‘Comparing two SVM models through different metrics based on the confusion matrix’, Computers & Operations Research, 152, p. 106131. doi:10.1016/j.cor.2022.106131.
- Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917
- A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of Fourier–
- Bessel expansion and LSTM,” Comput Biol Med, vol. 120, May 2020. https://doi.org/10.1016/j.compbiomed.2020.103753
References
Mohonta, S.C., Motin, M.A. and Kumar, D.K. (2022) 'Electrocardiogram based arrhythmia classification using wavelet transform with Deep Learning Model', Sensing and Bio-Sensing Research, 37, p. 100502—doi:10.1016/j.sbsr.2022.100502.
Irfan, S. et al. (2022) ‘Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique’, Sensors, 22(15), p. 5606. doi:10.3390/s22155606.
Usha Kumari, Ch. et al. (2021) ‘An automated detection of heart arrhythmias using machine learning technique: SVM’, Materials Today: Proceedings, 45, pp. 1393–1398. doi:10.1016/j.matpr.2020.07.088.
Sraitih, M., Jabrane, Y. and Hajjam El Hassani, A. (2021b) ‘An automated system for ECG arrhythmia detection using machine learning techniques’, Journal of Clinical Medicine, 10(22), p. 5450. doi:10.3390/jcm10225450.
Park, J. et al. (2023) ‘Self-attention LSTM-FCN model for Arrhythmia Classification and Uncertainty Assessment’, Artificial Intelligence in Medicine, 142, p. 102570. doi:10.1016/j.artmed.2023.102570.
Hassaballah, M. et al. (2023) ‘ECG Heartbeat Classification using machine learning and metaheuristic optimization for Smart Healthcare Systems’, Bioengineering, 10(4), p. 429. doi:10.3390/bioengineering10040429.
Mian Qaisar, S. et al. (2023) ‘Arrhythmia classification using multi-rate processing metaheuristic optimization and variational mode decomposition’, Journal of King Saud University - Computer and Information Sciences, 35(1), pp. 26–37. doi:10.1016/j.jksuci.2022.05.009.
Sarker, I.H. (2021) ‘Machine learning: Algorithms, real-world applications and Research Directions’, SN Computer Science, 2(3). doi:10.1007/s42979-021-00592-x.
Zhuang, S. et al. (2021) ‘Improved ecg‐derived respiration using empirical wavelet transform and kernel principal component analysis’, Computational Intelligence and Neuroscience, 2021(1). doi:10.1155/2021/1360414.
Singh, R., Rajpal, N. and Mehta, R. (2020) ‘Wavelet and kernel dimensional reduction on arrhythmia classification of ECG Signals’, EAI Endorsed Transactions on Scalable Information Systems, 7(26), p. 163095. doi:10.4108/eai.13-7-2018.163095.
Zhu, J. et al. (2022) ‘ECG Heartbeat Classification based on combined features extracted by PCA, KPCA, AKPCA and DWT’, 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS), pp. 155–159. doi:10.1109/cbms55023.2022.00034.
T.Sanamdikar, S. et al. (2023) ‘KPCA and SVR-based cardiac arrhythmia classification on Electrocardiography Waves’, 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 315–321. doi:10.1109/icssit55814.2023.10061047.
Xi, J. et al. (2020) ‘The research on feature extraction method of ECG signal based on KPCA dimension reduction’, Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 500–504. doi:10.1145/3383972.3384040.
Madonna, P. et al. (2021) 'Classification of ECG signals using the naïve Bayes classification method and its implementation in Android-based Smart Health Care', 2021 International Conference on Computer Science and Engineering (IC2SE), pp. 1–7. doi:10.1109/ic2se52832.2021.9791475.
Anandha Praba, R. et al. (2022) ‘Efficient cardiac arrhythmia detection using machine learning algorithms’, Journal of Physics: Conference Series, 2318(1), p. 012011. doi:10.1088/1742-6596/2318/1/012011.
Afadar, Y. et al. (2020) 'Heart arrhythmia abnormality classification using machine learning', 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (SCI), pp. 1–5. doi:10.1109/CCCI49893.2020.9256763.
Rahul, J. et al. (2021) ‘An improved cardiac arrhythmia classification using an RR interval-based approach’, Biocybernetics and Biomedical Engineering, 41(2), pp. 656–666. doi:10.1016/j.bbe.2021.04.004
Rayar, V. et al. (2022) 'Comparison of machine learning approaches for Classification of cardiac diseases', 2022 International Conference on Futuristic Technologies (INCOFT), pp. 1–4. doi:10.1109/INCOFT55651.2022.10094525.
Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917.
Wang, Y. et al. (2023) ‘Arrhythmia classification algorithm based on multi-head self-attention mechanism’, Biomedical Signal Processing and Control, 79, p. 104206. doi:10.1016/j.bspc.2022.104206.
Dias, F.M. et al. (2021) 'Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm', Computer Methods and Programs in Biomedicine, 202, p. 105948—doi:10.1016/j.cmpb.2021.105948.
Khalaf, A.J. and Mohammed, S.J. (2021) 'Verification and comparison of MIT-BiH arrhythmia database based on a number of beats', International Journal of Electrical and Computer Engineering (IJECE), 11(6), p. 4950. doi:10.11591/ijece.v11i6.pp4950-4961.
Rehman, A. et al. (2020) 'Performance analysis of PCA, sparse PCA, Kernel PCA, and Incremental PCA algorithms for heart failure prediction', 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5. doi:10.1109/icecce49384.2020.9179199.
Djoufack Nkengfack, L.C. et al. (2021) ‘A comparison study of polynomial-based PCA, KPCA, Lda, and GDA feature extraction methods for epileptic and eye states EEG signals detection using kernel machines', Informatics in Medicine Unlocked, 26, p. 100721. doi:10.1016/j.imu.2021.100721.
Abdullah, A. et al. (2023) ‘Stacked LSTM and kernel-PCA-based ensemble learning for Cardiac Arrhythmia Classification’, International Journal of Advanced Computer Science and Applications, 14(9). doi:10.14569/ijacsa.2023.0140905.
Wickramasinghe, I. and Kalutarage, H. (2020) 'Naive Bayes: Applications, variations, and vulnerabilities: A review of the literature with code snippets for implementation', Soft Computing, 25(3), pp. 2277–2293. doi:10.1007/s00500-020-05297-6.
Deka, D. (2020) ‘Detection of congestive heart failure using naive Bayes classifier’, International Journal of Engineering and Advanced Technology, 9(3), pp. 4154–4159. doi:10.35940/ijeat.c6623.029320.
Yousef, M. and Khaled Batiha, Prof. (2021) 'Heart disease prediction model using naive Bayes algorithm and machine learning techniques', International Journal of Engineering & Technology, 10(1), pp. 46–56. doi:10.14419/ijet.v10i1.31310.
Xu, J., Zhang, Y. and Miao, D. (2020) ‘Three-way confusion matrix for classification: A measure driven view’, Information Sciences, 507, pp. 772–794. doi:10.1016/j.ins.2019.06.064.
Valero-Carreras, D., Alcaraz, J. and Landete, M. (2023) ‘Comparing two SVM models through different metrics based on the confusion matrix’, Computers & Operations Research, 152, p. 106131. doi:10.1016/j.cor.2022.106131.
Yunidar, Y., Melinda, M., Azmi, U., Bashir, N., Nurbadriani, C. N., & Taqiuddin, Z. (2024). Classification of Arrhythmic and Normal Signals using Continuous Wavelet Transform (CWT) and Long Short-Term Memory (LSTM). Kinetik: Game Technology, Information Systems, Computer Networks, Computing, Electronics, and Control, 9(2), 129-138. https://doi.org/10.22219/kinetik.v9i2.1917
A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of Fourier–
Bessel expansion and LSTM,” Comput Biol Med, vol. 120, May 2020. https://doi.org/10.1016/j.compbiomed.2020.103753