Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 3, August 2025
  4. Articles

Issue

Vol. 10, No. 3, August 2025

Issue Published : Jun 13, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Land Price Distribution Prediction in Jakarta Using Support Vector Machine with Feature Expansion and Kriging Interpolation

https://doi.org/10.22219/kinetik.v10i3.2216
Hadid Pilar Gautama
Telkom University
Sri Suryani Prasetiyowati
Telkom University
Yuliant Sibaroni
Telkom University

Corresponding Author(s) : Hadid Pilar Gautama

hadidgautama@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 3, August 2025
Article Published : Jun 13, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Fluctuations in land prices over time are significant, especially in big cities, one of which is Jakarta. The increase in land prices is influenced by high demand, location-related needs, ease of access to various public facilities and population density. Uncontrolled prices and lack of information about the distribution of land prices cause buyers to acquire land that does not meet their needs. This study develops a land price distribution prediction system for Jakarta for 2025-2026 using Support Vector Machine (SVM) with time-based feature expansion and spatial interpolation. The SVM model with an RBF kernel demonstrated superior performance, achieving 93.14% accuracy for 2025 predictions using the t-1 model. For 2026 predictions, the t-2 model achieved 83.33% accuracy. This approach involves utilizing one to two years of historical data and systematically selected features, ensuring more accurate and relevant predictions. Ordinary kriging interpolation visualizations revealed a significant shift in land price distribution patterns, indicating a decline in affordable land availability and an increase in high-value properties across Jakarta. The integration of SVM and kriging interpolation, coupled with comprehensive evaluation metrics, provides a robust methodological framework for predicting urban land price distributions. This system offers practical implications for informed decision-making in Jakarta's dynamic land market, enabling stakeholders to make efficient, budget-based property decisions. The research contributes significantly to urban planning by providing a comprehensive tool for understanding and predicting land price trends, which can assist various stakeholders in making informed property investment decisions.

Keywords

Land Price Prediction Jakarta Support Vector Machine (SVM) Time Based Feature Expansion Kriging Interpolation
Pilar Gautama, H., Prasetiyowati, S. S., & Sibaroni, Y. (2025). Land Price Distribution Prediction in Jakarta Using Support Vector Machine with Feature Expansion and Kriging Interpolation. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(3), 271-282. https://doi.org/10.22219/kinetik.v10i3.2216
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. I. Fadhlurrahman, “29% Penduduk DKI Jakarta ada di Kota Jakarta Timur pada Pertengahan 2024,” databoks.
  2. Jakarta.bps.go.id, “Luas Daerah Menurut Kabupaten/Kota,” Jakarta.
  3. bps.go.id, “Garis Kemiskinan, Jumlah, dan Persentase Penduduk Miskin di Daerah Menurut Kabupaten/Kota di Provinsi DKI Jakarta, 2022-2023,”.
  4. C. D. Putra, A. Ramadhani, and E. Fatimah, “Increasing Urban Heat Island area in Jakarta and it’s relation to land use changes,” IOP Conference Series: Earth and Environmental Science, vol. 737, no. 1, 2021. https://doi.org/10.1088/1755-1315/737/1/012002
  5. B. A. Bonci, E. Mccoy, and J. Cole, “A research review : the importance of families and the home environment,” no. March, 2011.
  6. N. A. Chandrasa, S. S. Prasetyowati, and Y. Sibaroni, “Land Price Classification Map in Jakarta Using Random Forest and Ordinary Kriging,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, 2022. https://doi.org/10.47065/bits.v4i2.1896
  7. A. N. Rais, I. Alfarobi, S. W. Hadi, and W. Kurniawan, “Analisa Prediksi Harga Jual Rumah Menggunakan,” vol. 6, no. 2, pp. 417–423, 2024.
  8. N. A. Az-zahra and D. B. Arianto, “Analisis Perbandingan Algoritma Regresi Linear dan Decision Tree pada Prediksi Harga Rumah,” pp. 2–6.
  9. C. Shousong, G. Xiaomin, W. Xiaoguang, and C. Ying, “Notice of Removal: Research on Urban Land Price Assessment Based on Artificial Neural Network Model,” IEEE Access, vol. 7, no. June 2018, pp. 180738–180748, 2019. https://doi.org/10.1109/ACCESS.2019.2958978
  10. A. H. Suhendar, A. A. Rohmawati, and S. S. Prasetyowati, “Performance of CART Time-Based Feature Expansion in Dengue Classification Index Rate,” Sinkron, vol. 9, no. 1, pp. 1–9, 2024. https://doi.org/10.33395/sinkron.v9i1.13023
  11. S. Murni, D. Widiyanto, and C. N. P. Dewi, “Klasifikasi Citra Penyakit Daun Kopi Arabika Menggunakan Support Vector Machine (SVM) Dengan Seleksi Fitur Information Gain,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 700–709, 2022.
  12. Y. I. Mukti, “Sistem Prediksi Lulus Tepat Waktu Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (Svm),” JUTIM (Jurnal Teknik Informatika Musirawas), vol. 5, no. 2, pp. 110–115, 2020. https://doi.org/10.32767/jutim.v5i2.1050
  13. U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Scientific Student Journal for Information, Technology and Science, vol. III, no. 2, pp. 254–259, 2022.
  14. D. Sitanggang and S. Sherly, “Model Prediksi Obesitas dengan Menggunakan Support Vector Machine,” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 172–175, 2022. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2443
  15. I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” Bina Insani Ict Journal, vol. 10, no. 1, p. 52, 2023. https://doi.org/10.51211/biict.v10i1.2304
  16. M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, 2021. https://doi.org/10.29207/resti.v5i2.3008
  17. M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, 2018.
  18. K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, 2021. https://doi.org/10.24076/joism.2021v3i1.341
  19. J. A. Nursiyono and D. M. Dewi, “Determinan Harga Tanah di Indonesia Menggunakan Big Data (Studi Kasus: www.lamudi.co.id),” Jurnal Pertanahan, vol. 11, no. 2, 2021. https://doi.org/10.53686/jp.v11i2.105
  20. C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Ef fi cient and Reliable Knowledge Discovery From Building Operational Data,” vol. 9, no. March, pp. 1–17, 2021. https://doi.org/10.3389/fenrg.2021.652801
  21. P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection,” 15th International Conference on Network and Service Management, CNSM 2019, 2019. https://doi.org/10.23919/CNSM46954.2019.9012708
  22. S. S. Prasetiyowati and Y. Sibaroni, “Unlocking the potential of Naive Bayes for spatio temporal classification: a novel approach to feature expansion,” Journal of Big Data, vol. 11, no. 1, 2024. https://doi.org/10.1186/s40537-024-00958-x
  23. M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Learning Support Vector Machine,” vol. 4, no. 2, pp. 99–106, 2019. https://doi.org/10.22219/kinetik.v4i2.724
  24. H. R. Baghaee, D. Mlakic, S. Nikolovski, and T. Dragicevic, “Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2385–2403, 2020. https://doi.org/10.1109/JESTPE.2019.2916621
  25. C. Li, K. Liu, and H. Wang, “The incremental learning algorithm with support vector machine based on hyperplane-distance,” Applied Intelligence, vol. 34, no. 1, pp. 19–27, 2011. https://doi.org/10.1007/s10489-009-0176-9
  26. S. Ding, X. Hua, and J. Yu, “An overview on nonparallel hyperplane support vector machine algorithms,” pp. 975–982, 2014. https://doi.org/10.1007/s00521-013-1524-6
  27. L. G. May, “Classification”.
  28. C. Dooley, “Data visualisation and machine learning web application with potential use in sports data analytics,” 2017.
  29. D. A. S. Kali, “Pemetaan Sebaran Hujan Rancangan Menggunakan Interpolasi,” vol. 04, no. 01, pp. 239–249, 2024.
  30. M. D. Muldani, S. S. Prasetiyowati, and Y. Sibaroni, “Air Pollution Classification Prediction Model with Deep Neural Network based on Time-Based Feature Expansion and Temporal Spatial Analysis,” vol. 6, no. 2, pp. 867–877, 2024. https://doi.org/10.47065/bits.v6i2.5675
  31. K. Novak Zelenika, R. Vidaček, T. Ilijaš, and P. Pavić, “Application of deterministic and stochastic geostatistical methods in petrophysical modelling – a case study of upper pannonian reservoir in sava depression,” Geologia Croatica, vol. 70, no. 2, pp. 105–114, 2017. https://doi.org/10.4154/gc.2017.10
  32. S. Pratama, “Prediksi Harga Tanah Menggunakan Algoritma Linear Regression,” Technologia : Jurnal Ilmiah, vol. 7, no. 2, pp. 122–130, 2016. https://doi.org/10.31602/tji.v7i2.624
  33. M. L. Mu’tashim, T. Muhayat, S. A. Damayanti, H. N. Zaki, and R. Wirawan, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression,” Informatik : Jurnal Ilmu Komputer, vol. 17, no. 3, p. 238, 2021. https://doi.org/10.52958/iftk.v17i3.3635
  34. A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 1, pp. 41–50, 2021. https://doi.org/10.35957/jatisi.v8i1.701
  35. W. Yustanti, “Nihru Nafi’ Dzikrulloh, Indriati, Budi Darma Setiawan 2017,” Jurnal Matematika statistika dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.
  36. M. Ma, S. Mei, S. Wan, Z. Wang, and D. Feng, “Video summarization via nonlinear sparse dictionary selection,” IEEE Access, vol. 7, no. December, pp. 11763–11774, 2019. https://doi.org/10.1109/ACCESS.2019.2891834
  37. V. Apostolidis-Afentoulis, “SVM Classification with Linear and Rbf Kernels,” ResearchGate, no. July, pp. 0–7, 2015. https://doi.org/10.13140/RG.2.1.3351.4083
  38. S. Wang, J. Tang, and H. Liu, “Encyclopedia of Machine Learning and Data Science,” Encyclopedia of Machine Learning and Data Science, no. October 2017, 2020. https://doi.org/10.1007/978-1-4899-7502-7
  39. Y. Akhiat and S. Amjad, “Feature Selection : A Review and Comparative Study Feature Selection : A Review and Comparative Study,” no. May, 2022. https://doi.org/10.1051/e3sconf/202235101046
  40. T. Jurnal, S. Dan, F. Pohan, and R. Adi, “Ordinary kriging dalam penentuan lama penggalian tambang terbuka,” vol. 15, no. 2, pp. 130–136, 2019.
Read More

References


I. Fadhlurrahman, “29% Penduduk DKI Jakarta ada di Kota Jakarta Timur pada Pertengahan 2024,” databoks.

Jakarta.bps.go.id, “Luas Daerah Menurut Kabupaten/Kota,” Jakarta.

bps.go.id, “Garis Kemiskinan, Jumlah, dan Persentase Penduduk Miskin di Daerah Menurut Kabupaten/Kota di Provinsi DKI Jakarta, 2022-2023,”.

C. D. Putra, A. Ramadhani, and E. Fatimah, “Increasing Urban Heat Island area in Jakarta and it’s relation to land use changes,” IOP Conference Series: Earth and Environmental Science, vol. 737, no. 1, 2021. https://doi.org/10.1088/1755-1315/737/1/012002

B. A. Bonci, E. Mccoy, and J. Cole, “A research review : the importance of families and the home environment,” no. March, 2011.

N. A. Chandrasa, S. S. Prasetyowati, and Y. Sibaroni, “Land Price Classification Map in Jakarta Using Random Forest and Ordinary Kriging,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, 2022. https://doi.org/10.47065/bits.v4i2.1896

A. N. Rais, I. Alfarobi, S. W. Hadi, and W. Kurniawan, “Analisa Prediksi Harga Jual Rumah Menggunakan,” vol. 6, no. 2, pp. 417–423, 2024.

N. A. Az-zahra and D. B. Arianto, “Analisis Perbandingan Algoritma Regresi Linear dan Decision Tree pada Prediksi Harga Rumah,” pp. 2–6.

C. Shousong, G. Xiaomin, W. Xiaoguang, and C. Ying, “Notice of Removal: Research on Urban Land Price Assessment Based on Artificial Neural Network Model,” IEEE Access, vol. 7, no. June 2018, pp. 180738–180748, 2019. https://doi.org/10.1109/ACCESS.2019.2958978

A. H. Suhendar, A. A. Rohmawati, and S. S. Prasetyowati, “Performance of CART Time-Based Feature Expansion in Dengue Classification Index Rate,” Sinkron, vol. 9, no. 1, pp. 1–9, 2024. https://doi.org/10.33395/sinkron.v9i1.13023

S. Murni, D. Widiyanto, and C. N. P. Dewi, “Klasifikasi Citra Penyakit Daun Kopi Arabika Menggunakan Support Vector Machine (SVM) Dengan Seleksi Fitur Information Gain,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 700–709, 2022.

Y. I. Mukti, “Sistem Prediksi Lulus Tepat Waktu Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (Svm),” JUTIM (Jurnal Teknik Informatika Musirawas), vol. 5, no. 2, pp. 110–115, 2020. https://doi.org/10.32767/jutim.v5i2.1050

U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Scientific Student Journal for Information, Technology and Science, vol. III, no. 2, pp. 254–259, 2022.

D. Sitanggang and S. Sherly, “Model Prediksi Obesitas dengan Menggunakan Support Vector Machine,” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 172–175, 2022. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2443

I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” Bina Insani Ict Journal, vol. 10, no. 1, p. 52, 2023. https://doi.org/10.51211/biict.v10i1.2304

M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, 2021. https://doi.org/10.29207/resti.v5i2.3008

M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, 2018.

K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, 2021. https://doi.org/10.24076/joism.2021v3i1.341

J. A. Nursiyono and D. M. Dewi, “Determinan Harga Tanah di Indonesia Menggunakan Big Data (Studi Kasus: www.lamudi.co.id),” Jurnal Pertanahan, vol. 11, no. 2, 2021. https://doi.org/10.53686/jp.v11i2.105

C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Ef fi cient and Reliable Knowledge Discovery From Building Operational Data,” vol. 9, no. March, pp. 1–17, 2021. https://doi.org/10.3389/fenrg.2021.652801

P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection,” 15th International Conference on Network and Service Management, CNSM 2019, 2019. https://doi.org/10.23919/CNSM46954.2019.9012708

S. S. Prasetiyowati and Y. Sibaroni, “Unlocking the potential of Naive Bayes for spatio temporal classification: a novel approach to feature expansion,” Journal of Big Data, vol. 11, no. 1, 2024. https://doi.org/10.1186/s40537-024-00958-x

M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Learning Support Vector Machine,” vol. 4, no. 2, pp. 99–106, 2019. https://doi.org/10.22219/kinetik.v4i2.724

H. R. Baghaee, D. Mlakic, S. Nikolovski, and T. Dragicevic, “Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2385–2403, 2020. https://doi.org/10.1109/JESTPE.2019.2916621

C. Li, K. Liu, and H. Wang, “The incremental learning algorithm with support vector machine based on hyperplane-distance,” Applied Intelligence, vol. 34, no. 1, pp. 19–27, 2011. https://doi.org/10.1007/s10489-009-0176-9

S. Ding, X. Hua, and J. Yu, “An overview on nonparallel hyperplane support vector machine algorithms,” pp. 975–982, 2014. https://doi.org/10.1007/s00521-013-1524-6

L. G. May, “Classification”.

C. Dooley, “Data visualisation and machine learning web application with potential use in sports data analytics,” 2017.

D. A. S. Kali, “Pemetaan Sebaran Hujan Rancangan Menggunakan Interpolasi,” vol. 04, no. 01, pp. 239–249, 2024.

M. D. Muldani, S. S. Prasetiyowati, and Y. Sibaroni, “Air Pollution Classification Prediction Model with Deep Neural Network based on Time-Based Feature Expansion and Temporal Spatial Analysis,” vol. 6, no. 2, pp. 867–877, 2024. https://doi.org/10.47065/bits.v6i2.5675

K. Novak Zelenika, R. Vidaček, T. Ilijaš, and P. Pavić, “Application of deterministic and stochastic geostatistical methods in petrophysical modelling – a case study of upper pannonian reservoir in sava depression,” Geologia Croatica, vol. 70, no. 2, pp. 105–114, 2017. https://doi.org/10.4154/gc.2017.10

S. Pratama, “Prediksi Harga Tanah Menggunakan Algoritma Linear Regression,” Technologia : Jurnal Ilmiah, vol. 7, no. 2, pp. 122–130, 2016. https://doi.org/10.31602/tji.v7i2.624

M. L. Mu’tashim, T. Muhayat, S. A. Damayanti, H. N. Zaki, and R. Wirawan, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression,” Informatik : Jurnal Ilmu Komputer, vol. 17, no. 3, p. 238, 2021. https://doi.org/10.52958/iftk.v17i3.3635

A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 1, pp. 41–50, 2021. https://doi.org/10.35957/jatisi.v8i1.701

W. Yustanti, “Nihru Nafi’ Dzikrulloh, Indriati, Budi Darma Setiawan 2017,” Jurnal Matematika statistika dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.

M. Ma, S. Mei, S. Wan, Z. Wang, and D. Feng, “Video summarization via nonlinear sparse dictionary selection,” IEEE Access, vol. 7, no. December, pp. 11763–11774, 2019. https://doi.org/10.1109/ACCESS.2019.2891834

V. Apostolidis-Afentoulis, “SVM Classification with Linear and Rbf Kernels,” ResearchGate, no. July, pp. 0–7, 2015. https://doi.org/10.13140/RG.2.1.3351.4083

S. Wang, J. Tang, and H. Liu, “Encyclopedia of Machine Learning and Data Science,” Encyclopedia of Machine Learning and Data Science, no. October 2017, 2020. https://doi.org/10.1007/978-1-4899-7502-7

Y. Akhiat and S. Amjad, “Feature Selection : A Review and Comparative Study Feature Selection : A Review and Comparative Study,” no. May, 2022. https://doi.org/10.1051/e3sconf/202235101046

T. Jurnal, S. Dan, F. Pohan, and R. Adi, “Ordinary kriging dalam penentuan lama penggalian tambang terbuka,” vol. 15, no. 2, pp. 130–136, 2019.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License