
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Land Price Distribution Prediction in Jakarta Using Support Vector Machine with Feature Expansion and Kriging Interpolation
Corresponding Author(s) : Hadid Pilar Gautama
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 3, August 2025
Abstract
Fluctuations in land prices over time are significant, especially in big cities, one of which is Jakarta. The increase in land prices is influenced by high demand, location-related needs, ease of access to various public facilities and population density. Uncontrolled prices and lack of information about the distribution of land prices cause buyers to acquire land that does not meet their needs. This study develops a land price distribution prediction system for Jakarta for 2025-2026 using Support Vector Machine (SVM) with time-based feature expansion and spatial interpolation. The SVM model with an RBF kernel demonstrated superior performance, achieving 93.14% accuracy for 2025 predictions using the t-1 model. For 2026 predictions, the t-2 model achieved 83.33% accuracy. This approach involves utilizing one to two years of historical data and systematically selected features, ensuring more accurate and relevant predictions. Ordinary kriging interpolation visualizations revealed a significant shift in land price distribution patterns, indicating a decline in affordable land availability and an increase in high-value properties across Jakarta. The integration of SVM and kriging interpolation, coupled with comprehensive evaluation metrics, provides a robust methodological framework for predicting urban land price distributions. This system offers practical implications for informed decision-making in Jakarta's dynamic land market, enabling stakeholders to make efficient, budget-based property decisions. The research contributes significantly to urban planning by providing a comprehensive tool for understanding and predicting land price trends, which can assist various stakeholders in making informed property investment decisions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Fadhlurrahman, “29% Penduduk DKI Jakarta ada di Kota Jakarta Timur pada Pertengahan 2024,” databoks.
- Jakarta.bps.go.id, “Luas Daerah Menurut Kabupaten/Kota,” Jakarta.
- bps.go.id, “Garis Kemiskinan, Jumlah, dan Persentase Penduduk Miskin di Daerah Menurut Kabupaten/Kota di Provinsi DKI Jakarta, 2022-2023,”.
- C. D. Putra, A. Ramadhani, and E. Fatimah, “Increasing Urban Heat Island area in Jakarta and it’s relation to land use changes,” IOP Conference Series: Earth and Environmental Science, vol. 737, no. 1, 2021. https://doi.org/10.1088/1755-1315/737/1/012002
- B. A. Bonci, E. Mccoy, and J. Cole, “A research review : the importance of families and the home environment,” no. March, 2011.
- N. A. Chandrasa, S. S. Prasetyowati, and Y. Sibaroni, “Land Price Classification Map in Jakarta Using Random Forest and Ordinary Kriging,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, 2022. https://doi.org/10.47065/bits.v4i2.1896
- A. N. Rais, I. Alfarobi, S. W. Hadi, and W. Kurniawan, “Analisa Prediksi Harga Jual Rumah Menggunakan,” vol. 6, no. 2, pp. 417–423, 2024.
- N. A. Az-zahra and D. B. Arianto, “Analisis Perbandingan Algoritma Regresi Linear dan Decision Tree pada Prediksi Harga Rumah,” pp. 2–6.
- C. Shousong, G. Xiaomin, W. Xiaoguang, and C. Ying, “Notice of Removal: Research on Urban Land Price Assessment Based on Artificial Neural Network Model,” IEEE Access, vol. 7, no. June 2018, pp. 180738–180748, 2019. https://doi.org/10.1109/ACCESS.2019.2958978
- A. H. Suhendar, A. A. Rohmawati, and S. S. Prasetyowati, “Performance of CART Time-Based Feature Expansion in Dengue Classification Index Rate,” Sinkron, vol. 9, no. 1, pp. 1–9, 2024. https://doi.org/10.33395/sinkron.v9i1.13023
- S. Murni, D. Widiyanto, and C. N. P. Dewi, “Klasifikasi Citra Penyakit Daun Kopi Arabika Menggunakan Support Vector Machine (SVM) Dengan Seleksi Fitur Information Gain,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 700–709, 2022.
- Y. I. Mukti, “Sistem Prediksi Lulus Tepat Waktu Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (Svm),” JUTIM (Jurnal Teknik Informatika Musirawas), vol. 5, no. 2, pp. 110–115, 2020. https://doi.org/10.32767/jutim.v5i2.1050
- U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Scientific Student Journal for Information, Technology and Science, vol. III, no. 2, pp. 254–259, 2022.
- D. Sitanggang and S. Sherly, “Model Prediksi Obesitas dengan Menggunakan Support Vector Machine,” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 172–175, 2022. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2443
- I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” Bina Insani Ict Journal, vol. 10, no. 1, p. 52, 2023. https://doi.org/10.51211/biict.v10i1.2304
- M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, 2021. https://doi.org/10.29207/resti.v5i2.3008
- M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, 2018.
- K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, 2021. https://doi.org/10.24076/joism.2021v3i1.341
- J. A. Nursiyono and D. M. Dewi, “Determinan Harga Tanah di Indonesia Menggunakan Big Data (Studi Kasus: www.lamudi.co.id),” Jurnal Pertanahan, vol. 11, no. 2, 2021. https://doi.org/10.53686/jp.v11i2.105
- C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Ef fi cient and Reliable Knowledge Discovery From Building Operational Data,” vol. 9, no. March, pp. 1–17, 2021. https://doi.org/10.3389/fenrg.2021.652801
- P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection,” 15th International Conference on Network and Service Management, CNSM 2019, 2019. https://doi.org/10.23919/CNSM46954.2019.9012708
- S. S. Prasetiyowati and Y. Sibaroni, “Unlocking the potential of Naive Bayes for spatio temporal classification: a novel approach to feature expansion,” Journal of Big Data, vol. 11, no. 1, 2024. https://doi.org/10.1186/s40537-024-00958-x
- M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Learning Support Vector Machine,” vol. 4, no. 2, pp. 99–106, 2019. https://doi.org/10.22219/kinetik.v4i2.724
- H. R. Baghaee, D. Mlakic, S. Nikolovski, and T. Dragicevic, “Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2385–2403, 2020. https://doi.org/10.1109/JESTPE.2019.2916621
- C. Li, K. Liu, and H. Wang, “The incremental learning algorithm with support vector machine based on hyperplane-distance,” Applied Intelligence, vol. 34, no. 1, pp. 19–27, 2011. https://doi.org/10.1007/s10489-009-0176-9
- S. Ding, X. Hua, and J. Yu, “An overview on nonparallel hyperplane support vector machine algorithms,” pp. 975–982, 2014. https://doi.org/10.1007/s00521-013-1524-6
- L. G. May, “Classification”.
- C. Dooley, “Data visualisation and machine learning web application with potential use in sports data analytics,” 2017.
- D. A. S. Kali, “Pemetaan Sebaran Hujan Rancangan Menggunakan Interpolasi,” vol. 04, no. 01, pp. 239–249, 2024.
- M. D. Muldani, S. S. Prasetiyowati, and Y. Sibaroni, “Air Pollution Classification Prediction Model with Deep Neural Network based on Time-Based Feature Expansion and Temporal Spatial Analysis,” vol. 6, no. 2, pp. 867–877, 2024. https://doi.org/10.47065/bits.v6i2.5675
- K. Novak Zelenika, R. Vidaček, T. Ilijaš, and P. Pavić, “Application of deterministic and stochastic geostatistical methods in petrophysical modelling – a case study of upper pannonian reservoir in sava depression,” Geologia Croatica, vol. 70, no. 2, pp. 105–114, 2017. https://doi.org/10.4154/gc.2017.10
- S. Pratama, “Prediksi Harga Tanah Menggunakan Algoritma Linear Regression,” Technologia : Jurnal Ilmiah, vol. 7, no. 2, pp. 122–130, 2016. https://doi.org/10.31602/tji.v7i2.624
- M. L. Mu’tashim, T. Muhayat, S. A. Damayanti, H. N. Zaki, and R. Wirawan, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression,” Informatik : Jurnal Ilmu Komputer, vol. 17, no. 3, p. 238, 2021. https://doi.org/10.52958/iftk.v17i3.3635
- A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 1, pp. 41–50, 2021. https://doi.org/10.35957/jatisi.v8i1.701
- W. Yustanti, “Nihru Nafi’ Dzikrulloh, Indriati, Budi Darma Setiawan 2017,” Jurnal Matematika statistika dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.
- M. Ma, S. Mei, S. Wan, Z. Wang, and D. Feng, “Video summarization via nonlinear sparse dictionary selection,” IEEE Access, vol. 7, no. December, pp. 11763–11774, 2019. https://doi.org/10.1109/ACCESS.2019.2891834
- V. Apostolidis-Afentoulis, “SVM Classification with Linear and Rbf Kernels,” ResearchGate, no. July, pp. 0–7, 2015. https://doi.org/10.13140/RG.2.1.3351.4083
- S. Wang, J. Tang, and H. Liu, “Encyclopedia of Machine Learning and Data Science,” Encyclopedia of Machine Learning and Data Science, no. October 2017, 2020. https://doi.org/10.1007/978-1-4899-7502-7
- Y. Akhiat and S. Amjad, “Feature Selection : A Review and Comparative Study Feature Selection : A Review and Comparative Study,” no. May, 2022. https://doi.org/10.1051/e3sconf/202235101046
- T. Jurnal, S. Dan, F. Pohan, and R. Adi, “Ordinary kriging dalam penentuan lama penggalian tambang terbuka,” vol. 15, no. 2, pp. 130–136, 2019.
References
I. Fadhlurrahman, “29% Penduduk DKI Jakarta ada di Kota Jakarta Timur pada Pertengahan 2024,” databoks.
Jakarta.bps.go.id, “Luas Daerah Menurut Kabupaten/Kota,” Jakarta.
bps.go.id, “Garis Kemiskinan, Jumlah, dan Persentase Penduduk Miskin di Daerah Menurut Kabupaten/Kota di Provinsi DKI Jakarta, 2022-2023,”.
C. D. Putra, A. Ramadhani, and E. Fatimah, “Increasing Urban Heat Island area in Jakarta and it’s relation to land use changes,” IOP Conference Series: Earth and Environmental Science, vol. 737, no. 1, 2021. https://doi.org/10.1088/1755-1315/737/1/012002
B. A. Bonci, E. Mccoy, and J. Cole, “A research review : the importance of families and the home environment,” no. March, 2011.
N. A. Chandrasa, S. S. Prasetyowati, and Y. Sibaroni, “Land Price Classification Map in Jakarta Using Random Forest and Ordinary Kriging,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 2, 2022. https://doi.org/10.47065/bits.v4i2.1896
A. N. Rais, I. Alfarobi, S. W. Hadi, and W. Kurniawan, “Analisa Prediksi Harga Jual Rumah Menggunakan,” vol. 6, no. 2, pp. 417–423, 2024.
N. A. Az-zahra and D. B. Arianto, “Analisis Perbandingan Algoritma Regresi Linear dan Decision Tree pada Prediksi Harga Rumah,” pp. 2–6.
C. Shousong, G. Xiaomin, W. Xiaoguang, and C. Ying, “Notice of Removal: Research on Urban Land Price Assessment Based on Artificial Neural Network Model,” IEEE Access, vol. 7, no. June 2018, pp. 180738–180748, 2019. https://doi.org/10.1109/ACCESS.2019.2958978
A. H. Suhendar, A. A. Rohmawati, and S. S. Prasetyowati, “Performance of CART Time-Based Feature Expansion in Dengue Classification Index Rate,” Sinkron, vol. 9, no. 1, pp. 1–9, 2024. https://doi.org/10.33395/sinkron.v9i1.13023
S. Murni, D. Widiyanto, and C. N. P. Dewi, “Klasifikasi Citra Penyakit Daun Kopi Arabika Menggunakan Support Vector Machine (SVM) Dengan Seleksi Fitur Information Gain,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), pp. 700–709, 2022.
Y. I. Mukti, “Sistem Prediksi Lulus Tepat Waktu Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (Svm),” JUTIM (Jurnal Teknik Informatika Musirawas), vol. 5, no. 2, pp. 110–115, 2020. https://doi.org/10.32767/jutim.v5i2.1050
U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Scientific Student Journal for Information, Technology and Science, vol. III, no. 2, pp. 254–259, 2022.
D. Sitanggang and S. Sherly, “Model Prediksi Obesitas dengan Menggunakan Support Vector Machine,” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 172–175, 2022. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2443
I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” Bina Insani Ict Journal, vol. 10, no. 1, p. 52, 2023. https://doi.org/10.51211/biict.v10i1.2304
M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, 2021. https://doi.org/10.29207/resti.v5i2.3008
M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112–3123, 2018.
K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” Journal of Information System Management (JOISM), vol. 3, no. 1, pp. 1–7, 2021. https://doi.org/10.24076/joism.2021v3i1.341
J. A. Nursiyono and D. M. Dewi, “Determinan Harga Tanah di Indonesia Menggunakan Big Data (Studi Kasus: www.lamudi.co.id),” Jurnal Pertanahan, vol. 11, no. 2, 2021. https://doi.org/10.53686/jp.v11i2.105
C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Ef fi cient and Reliable Knowledge Discovery From Building Operational Data,” vol. 9, no. March, pp. 1–17, 2021. https://doi.org/10.3389/fenrg.2021.652801
P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring Feature Normalization and Temporal Information for Machine Learning Based Insider Threat Detection,” 15th International Conference on Network and Service Management, CNSM 2019, 2019. https://doi.org/10.23919/CNSM46954.2019.9012708
S. S. Prasetiyowati and Y. Sibaroni, “Unlocking the potential of Naive Bayes for spatio temporal classification: a novel approach to feature expansion,” Journal of Big Data, vol. 11, no. 1, 2024. https://doi.org/10.1186/s40537-024-00958-x
M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Learning Support Vector Machine,” vol. 4, no. 2, pp. 99–106, 2019. https://doi.org/10.22219/kinetik.v4i2.724
H. R. Baghaee, D. Mlakic, S. Nikolovski, and T. Dragicevic, “Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2385–2403, 2020. https://doi.org/10.1109/JESTPE.2019.2916621
C. Li, K. Liu, and H. Wang, “The incremental learning algorithm with support vector machine based on hyperplane-distance,” Applied Intelligence, vol. 34, no. 1, pp. 19–27, 2011. https://doi.org/10.1007/s10489-009-0176-9
S. Ding, X. Hua, and J. Yu, “An overview on nonparallel hyperplane support vector machine algorithms,” pp. 975–982, 2014. https://doi.org/10.1007/s00521-013-1524-6
L. G. May, “Classification”.
C. Dooley, “Data visualisation and machine learning web application with potential use in sports data analytics,” 2017.
D. A. S. Kali, “Pemetaan Sebaran Hujan Rancangan Menggunakan Interpolasi,” vol. 04, no. 01, pp. 239–249, 2024.
M. D. Muldani, S. S. Prasetiyowati, and Y. Sibaroni, “Air Pollution Classification Prediction Model with Deep Neural Network based on Time-Based Feature Expansion and Temporal Spatial Analysis,” vol. 6, no. 2, pp. 867–877, 2024. https://doi.org/10.47065/bits.v6i2.5675
K. Novak Zelenika, R. Vidaček, T. Ilijaš, and P. Pavić, “Application of deterministic and stochastic geostatistical methods in petrophysical modelling – a case study of upper pannonian reservoir in sava depression,” Geologia Croatica, vol. 70, no. 2, pp. 105–114, 2017. https://doi.org/10.4154/gc.2017.10
S. Pratama, “Prediksi Harga Tanah Menggunakan Algoritma Linear Regression,” Technologia : Jurnal Ilmiah, vol. 7, no. 2, pp. 122–130, 2016. https://doi.org/10.31602/tji.v7i2.624
M. L. Mu’tashim, T. Muhayat, S. A. Damayanti, H. N. Zaki, and R. Wirawan, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression,” Informatik : Jurnal Ilmu Komputer, vol. 17, no. 3, p. 238, 2021. https://doi.org/10.52958/iftk.v17i3.3635
A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 1, pp. 41–50, 2021. https://doi.org/10.35957/jatisi.v8i1.701
W. Yustanti, “Nihru Nafi’ Dzikrulloh, Indriati, Budi Darma Setiawan 2017,” Jurnal Matematika statistika dan komputasi, vol. 9, no. 1, pp. 57–68, 2012.
M. Ma, S. Mei, S. Wan, Z. Wang, and D. Feng, “Video summarization via nonlinear sparse dictionary selection,” IEEE Access, vol. 7, no. December, pp. 11763–11774, 2019. https://doi.org/10.1109/ACCESS.2019.2891834
V. Apostolidis-Afentoulis, “SVM Classification with Linear and Rbf Kernels,” ResearchGate, no. July, pp. 0–7, 2015. https://doi.org/10.13140/RG.2.1.3351.4083
S. Wang, J. Tang, and H. Liu, “Encyclopedia of Machine Learning and Data Science,” Encyclopedia of Machine Learning and Data Science, no. October 2017, 2020. https://doi.org/10.1007/978-1-4899-7502-7
Y. Akhiat and S. Amjad, “Feature Selection : A Review and Comparative Study Feature Selection : A Review and Comparative Study,” no. May, 2022. https://doi.org/10.1051/e3sconf/202235101046
T. Jurnal, S. Dan, F. Pohan, and R. Adi, “Ordinary kriging dalam penentuan lama penggalian tambang terbuka,” vol. 15, no. 2, pp. 130–136, 2019.