Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 2, May 2025
  4. Articles

Issue

Vol. 10, No. 2, May 2025

Issue Published : May 31, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Optimizing Autonomous Navigation: Advances in LiDAR-based Object Recognition with Modified Voxel-RCNN

https://doi.org/10.22219/kinetik.v10i2.2199
Firman
Universitas Garut
Arief Suryadi Satyawan
Research Center for Telecommunication - BRIN
Helfy Susilawati
Universitas Garut
Mokh. Mirza Etnisa Haqiqi
Universitas Garut
Khaulyca Arva Artemysia
Universitas Garut
Sani Moch Sopian
Universitas Garut
Beni Wijaya
Universitas Garut
Muhammad Ikbal Samie
Universitas Garut

Corresponding Author(s) : Firman

24052121044@fteknik.uniga.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 2, May 2025
Article Published : May 31, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This study aimed to enhance the object recognition capabilities of autonomous vehicles in constrained and dynamic environments. By integrating Light Detection and Ranging (LiDAR) technology with a modified Voxel-RCNN framework, the system detected and classified six object classes: human, wall, car, cyclist, tree, and cart. This integration improved the safety and reliability of autonomous navigation. The methodology included the preparation of a point cloud dataset, conversion into the KITTI format for compatibility with the Voxel-RCNN pipeline, and comprehensive model training. The framework was evaluated using metrics such as precision, recall, F1-score, and mean average precision (mAP). Modifications to the Voxel-RCNN framework were introduced to improve classification accuracy, addressing challenges encountered in complex navigation scenarios. Experimental results demonstrated the robustness of the proposed modifications. Modification 2 consistently outperformed the baseline, with 3D detection scores for the car class in hard scenarios increasing from 4.39 to 10.31. Modification 3 achieved the lowest training loss of 1.68 after 600 epochs, indicating significant improvements in model optimization. However, variability in the real-world performance of Modification 3 highlighted the need for balancing optimized training with practical applicability. Overall, the study found that the training loss decreased up to 29.1% and achieved substantial improvements in detection accuracy under challenging conditions. These findings underscored the potential of the proposed system to advance the safety and intelligence of autonomous vehicles, providing a solid foundation for future research in autonomous navigation and object recognition.

Keywords

Autonomous vehicles LiDAR Voxel-RCNN Object recognition Point cloud dataset 3D detection
Firman, Satyawan, A. S., Susilawati, H., Haqiqi, M. M. E. ., Artemysia, K. A., Sopian, S. M., Wijaya, B., & Samie, M. I. (2025). Optimizing Autonomous Navigation: Advances in LiDAR-based Object Recognition with Modified Voxel-RCNN. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(2). https://doi.org/10.22219/kinetik.v10i2.2199
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. M. Nadeem Hangar, Q. Ahmed, F. Khan, and M. Hafeez, “A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges,” Sensors, vol. 21, p. 706, 2021. https://doi.org/10.3390/s21030706
  2. R. Keith and H. La, “Review of Autonomous Mobile Robots for the Warehouse Environment,” 2024. https://doi.org/10.48550/arXiv.2406.08333
  3. A. Roshanianfard, N. Noguchi, H. Okamoto, and K. Ishii, “A review of autonomous agricultural vehicles (The experience of Hokkaido University),” J. Terramechanics, vol. 91, pp. 155–183, 2020. https://doi.org/10.1016/j.jterra.2020.06.006
  4. M. Ibiyemi and D. Olutimehin, “Revolutionizing logistics: The impact of autonomous vehicles on supply chain efficiency,” Int. J. Sci. Res. Updat., vol. 8, pp. 9–26, 2024. https://doi.org/10.53430/ijsru.2024.8.1.0042
  5. E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous Driving: Common Practices and Emerging Technologies,” IEEE Access, vol. PP, p. 1, 2020. https://doi.org/10.1109/ACCESS.2020.2983149
  6. R. Qian, X. Lai, and X. Li, 3D Object Detection for Autonomous Driving: A Survey. 2021. https://doi.org/10.48550/arXiv.2106.10823
  7. R. Qian, X. Lai, and X. Li, “3D Object Detection for Autonomous Driving: A Survey,” Pattern Recognit., vol. 130, 2022. https://doi.org/10.1016/j.patcog.2022.108796
  8. F. Liu, Z. Lu, and X. Lin, “Vision-based environmental perception for autonomous driving,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2023. https://doi.org/10.1177/09544070231203059
  9. L. Peng, H. Wang, and J. Li, “Uncertainty Evaluation of Object Detection Algorithms for Autonomous Vehicles,” Automot. Innov., vol. 4, 2021. https://doi.org/10.1007/s42154-021-00154-0
  10. L. Lidar, L. Bai, S. Member, Y. Zhao, X. Huang, and S. Member, “Enabling 3D Object Detection with a,” vol. 14, no. 8, pp. 2–5, 2015.
  11. Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, “Pseudo-LiDAR from Visual Depth Estimation : Bridging the Gap in 3D Object Detection for Autonomous Driving”.
  12. J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel R-CNN : Towards High Performance Voxel-based 3D Object Detection,” 2020.
  13. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. https://doi.org/10.1109/TPAMI.2016.2577031
  14. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
  15. N. L. W. Keijsers, “Neural Networks,” Encycl. Mov. Disord. Three-Volume Set, pp. V2-257-V2-259, 2010. https://doi.org/10.1016/B978-0-12-374105-9.00493-7
  16. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397, 2020. https://doi.org/10.1109/TPAMI.2018.2844175
  17. J. Shin, J. Kim, K. Lee, H. Cho, and W. Rhee, “Diversified and Realistic 3D Augmentation via Iterative Construction, Random Placement, and HPR Occlusion,” Proc. 37th AAAI Conf. Artif. Intell. AAAI 2023, vol. 37, pp. 2282–2291, 2023. https://doi.org/10.1609/aaai.v37i2.25323
  18. A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.
  19. D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
  20. Y. Bengio, Learning deep architectures for AI, vol. 2, no. 1. 2009. https://doi.org/10.1561/2200000006
  21. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., pp. 1–12, 2013.
  22. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.
  23. Z. Chao, F. Pu, Y. Yin, B. Han, and X. Chen, “Research on real-time local rainfall prediction based on MEMS sensors,” J. Sensors, vol. 2018, pp. 1–9, 2018. https://doi.org/10.1155/2018/6184713
  24. G. Cohen and R. Giryes, “Generative Adversarial Networks,” Mach. Learn. Data Sci. Handb. Data Min. Knowl. Discov. Handbook, Third Ed., pp. 375–400, 2023. https://doi.org/10.1007/978-3-031-24628-9_17
  25. Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object detection,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-Octob, pp. 9626–9635, 2019. https://doi.org/10.1109/ICCV.2019.00972
  26. Q. Zhong and X.-F. Han, “Point Cloud Learning with Transformer,” 2021. https://doi.org/10.48550/arXiv.2104.13636
  27. A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314–1324. https://doi.org/10.1109/ICCV.2019.00140
Read More

References


M. Nadeem Hangar, Q. Ahmed, F. Khan, and M. Hafeez, “A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges,” Sensors, vol. 21, p. 706, 2021. https://doi.org/10.3390/s21030706

R. Keith and H. La, “Review of Autonomous Mobile Robots for the Warehouse Environment,” 2024. https://doi.org/10.48550/arXiv.2406.08333

A. Roshanianfard, N. Noguchi, H. Okamoto, and K. Ishii, “A review of autonomous agricultural vehicles (The experience of Hokkaido University),” J. Terramechanics, vol. 91, pp. 155–183, 2020. https://doi.org/10.1016/j.jterra.2020.06.006

M. Ibiyemi and D. Olutimehin, “Revolutionizing logistics: The impact of autonomous vehicles on supply chain efficiency,” Int. J. Sci. Res. Updat., vol. 8, pp. 9–26, 2024. https://doi.org/10.53430/ijsru.2024.8.1.0042

E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous Driving: Common Practices and Emerging Technologies,” IEEE Access, vol. PP, p. 1, 2020. https://doi.org/10.1109/ACCESS.2020.2983149

R. Qian, X. Lai, and X. Li, 3D Object Detection for Autonomous Driving: A Survey. 2021. https://doi.org/10.48550/arXiv.2106.10823

R. Qian, X. Lai, and X. Li, “3D Object Detection for Autonomous Driving: A Survey,” Pattern Recognit., vol. 130, 2022. https://doi.org/10.1016/j.patcog.2022.108796

F. Liu, Z. Lu, and X. Lin, “Vision-based environmental perception for autonomous driving,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 2023. https://doi.org/10.1177/09544070231203059

L. Peng, H. Wang, and J. Li, “Uncertainty Evaluation of Object Detection Algorithms for Autonomous Vehicles,” Automot. Innov., vol. 4, 2021. https://doi.org/10.1007/s42154-021-00154-0

L. Lidar, L. Bai, S. Member, Y. Zhao, X. Huang, and S. Member, “Enabling 3D Object Detection with a,” vol. 14, no. 8, pp. 2–5, 2015.

Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, “Pseudo-LiDAR from Visual Depth Estimation : Bridging the Gap in 3D Object Detection for Autonomous Driving”.

J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel R-CNN : Towards High Performance Voxel-based 3D Object Detection,” 2020.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. https://doi.org/10.1109/TPAMI.2016.2577031

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.

N. L. W. Keijsers, “Neural Networks,” Encycl. Mov. Disord. Three-Volume Set, pp. V2-257-V2-259, 2010. https://doi.org/10.1016/B978-0-12-374105-9.00493-7

K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397, 2020. https://doi.org/10.1109/TPAMI.2018.2844175

J. Shin, J. Kim, K. Lee, H. Cho, and W. Rhee, “Diversified and Realistic 3D Augmentation via Iterative Construction, Random Placement, and HPR Occlusion,” Proc. 37th AAAI Conf. Artif. Intell. AAAI 2023, vol. 37, pp. 2282–2291, 2023. https://doi.org/10.1609/aaai.v37i2.25323

A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for Image Recognition At Scale,” ICLR 2021 - 9th Int. Conf. Learn. Represent., 2021.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

Y. Bengio, Learning deep architectures for AI, vol. 2, no. 1. 2009. https://doi.org/10.1561/2200000006

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., pp. 1–12, 2013.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.

Z. Chao, F. Pu, Y. Yin, B. Han, and X. Chen, “Research on real-time local rainfall prediction based on MEMS sensors,” J. Sensors, vol. 2018, pp. 1–9, 2018. https://doi.org/10.1155/2018/6184713

G. Cohen and R. Giryes, “Generative Adversarial Networks,” Mach. Learn. Data Sci. Handb. Data Min. Knowl. Discov. Handbook, Third Ed., pp. 375–400, 2023. https://doi.org/10.1007/978-3-031-24628-9_17

Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object detection,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2019-Octob, pp. 9626–9635, 2019. https://doi.org/10.1109/ICCV.2019.00972

Q. Zhong and X.-F. Han, “Point Cloud Learning with Transformer,” 2021. https://doi.org/10.48550/arXiv.2104.13636

A. Howard et al., “Searching for MobileNetV3,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314–1324. https://doi.org/10.1109/ICCV.2019.00140

Author Biographies

Firman, Universitas Garut

Lead author, Conceptual, Metodology, Experimental, Analisis,Dataset Production, Writing, Editing

Arief Suryadi Satyawan, Research Center for Telecommunication - BRIN

Conceptual, Metodology, Writing Review

Helfy Susilawati, Universitas Garut

Conceptual, Metodology, Writing Review

Mokh. Mirza Etnisa Haqiqi, Universitas Garut

Conceptual, Metodology, Writing Review

Khaulyca Arva Artemysia, Universitas Garut

Dataset Production, Experimental

Sani Moch Sopian, Universitas Garut

Dataset Production, Experimental

Beni Wijaya, Universitas Garut

Dataset Production, Experimental

Muhammad Ikbal Samie, Universitas Garut

Dataset Production, Experimental

Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License