Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 2, May 2025
  4. Articles

Issue

Vol. 10, No. 2, May 2025

Issue Published : May 8, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Development of Lung Cancer Risk Screening Tool with Causal Discovery Model Evaluation Approach

https://doi.org/10.22219/kinetik.v10i2.2188
Sandi Wibowo
Bandung Institute of Technology
Jatniko Nur Mutaqin
Bandung Institute of Technology
Ari Apriansyah
Bandung Institute of Technology
Muhamad Komiyatu
Bandung Institute of Technology
Gusti Ayu Putri Saptawati Soekidjo
Bandung Institute of Technology

Corresponding Author(s) : Sandi Wibowo

sandihex@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 2, May 2025
Article Published : May 8, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Causal graph discovery approaches in healthcare for detecting high-risk diseases have been more widely applied in the last decade. The main challenge in causal graph discovery in healthcare data is the complexity of big data, which requires appropriate algorithms to reveal causal relationships between variables. This study focuses on evaluating the performance of seven causal discovery models—Peter-Clark (PC), Greedy Equivalent Search (GES), Direct LiNGAM, Directed Acyclic Graph-Graph Neural Network (DAG-GNN), Greedy Sparsest Permutation (GraSP), and Recursive Causal Discovery (RCD)—on opensource healthcare datasets. The model performance was evaluated using the Structural Intervention Distance (SID), Structural Hamming Distance (SHD), Matthews Correlation Coefficient (MCC), and Fobernius Norm (FN) metrics. The evaluation results conclusively show that the GES model performs best on low-complexity datasets. Meanwhile, the DAG-GNN model offers consistent performance on high-complexity data with MCC values ranging from 0.77 to 0.88. The application of the GES model for lung cancer risk screening, based on user question responses, demonstrated effectiveness by measuring MCC, SID, and SHD scores between the reference adjacency metrics and the resulting screening metrics.

Keywords

Structural Intervention Distance Structural Hamming Distance Matthews Correlation Coefficient Fobernius Norm Screening
Wibowo, S., Mutaqin, J. N., Apriansyah, A., Komiyatu, M., & Soekidjo, G. A. P. S. (2025). Development of Lung Cancer Risk Screening Tool with Causal Discovery Model Evaluation Approach. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(2). https://doi.org/10.22219/kinetik.v10i2.2188
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Krishna, R. S. (2023). Machine Learning Approaches in Early Lung Cancer Prediction: A Comprehensive Review. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 07(09). https://doi.org/10.55041/IJSREM25584
  2. P.R., R., Nair, R. A. S., & G., V. (2019). A Comparative Study of Lung Cancer Detection using Machine Learning Algorithms. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–4. https://doi.org/10.1109/ICECCT.2019.8869001
  3. Castro, D. C. de, Walker, I. D., & Glocker, B. (2020). Causality Matters in Medical Imaging. In Nature Communications.
  4. https://doi.org/10.1038/s41467-020-17478-w
  5. Doupé, P., Faghmous, J. H., & Basu, S. (2019). Machine Learning for Health Services Researchers. In Value in Health.
  6. https://doi.org/10.1016/j.jval.2019.02.012
  7. Nauta, M., Bucur, D., & Seifert, C. (2019). Causal Discovery with Attention-Based Convolutional Neural Networks. Machine Learning and Knowledge Extraction, 1(1), 312–340. https://doi.org/10.3390/make1010019
  8. Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7). https://doi.org/10.1063/1.5025050
  9. Xie, N.-N., Hu, L., & Li, T.-H. (2015). Lung Cancer Risk Prediction Method Based on Feature Selection and Artificial Neural Network. Asian Pacific Journal of Cancer Prevention, 15(23), 10539–10542. https://doi.org/10.7314/APJCP.2014.15.23.10539
  10. Niu, W., Gao, Z., Song, L., & Li, L. (2024). Comprehensive Review and Empirical Evaluation of Causal Discovery Algorithms for Numerical Data. http://arxiv.org/abs/2407.13054
  11. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinović, D. (2019). Detecting and Quantifying Causal Associations in Large Nonlinear Time Series Datasets. In Science Advances. https://doi.org/10.1126/sciadv.aau4996
  12. Schreiber, T. (2000). Measuring Information Transfer. In Physical Review Letters. https://doi.org/10.1103/physrevlett.85.461
  13. Shimizu, S., Hoyer, P. O., & Hyvärinen, A. (2009). Estimation of Linear Non-Gaussian Acyclic Models for Latent Factors. In Neurocomputing.
  14. https://doi.org/10.1016/j.neucom.2008.11.018
  15. Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., López-Paz, D., & Sebag, M. (2018). Learning Functional Causal Models With Generative Neural Networks. https://doi.org/10.1007/978-3-319-98131-4_3
  16. Bühlmann, P., Peters, J., & Ernest, J. (2014). CAM: Causal Additive Models, High-Dimensional Order Search and Penalized Regression. In The Annals of Statistics. https://doi.org/10.1214/14-aos1260
  17. Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. In Machine Learning. https://doi.org/10.1007/s10994-006-6889-7
  18. David Maxwell Chickering. (1996). Learning bayesian networks is np-complete. Learning from data: Artificial intelligence and statistics V: Vol. V. Springer.
  19. Singh, K., Gupta, G., Tewari, V., & Shroff, G. (2018). Comparative benchmarking of causal discovery algorithms. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, 46–56. https://doi.org/10.1145/3152494.3152499
  20. Cao, L., Su, J., Cao, Y., Siang, L. C., Li, J., Saddler, J., & Gopaluni, R. B. (2022). Causal Discovery Based on Observational Data and Process Knowledge in Industrial Processes. In Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.2c01326
  21. Glymour, C., Zhang, K., & Spirtes, P. (2019). Review of Causal Discovery Methods Based on Graphical Models. In Frontiers in Genetics.
  22. https://doi.org/10.3389/fgene.2019.00524
  23. Lu, N. Y., Zhang, K., & Yuan, C. (2021). Improving Causal Discovery By Optimal Bayesian Network Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10), 8741–8748. https://doi.org/10.1609/aaai.v35i10.17059
  24. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11). https://doi.org/10.1126/sciadv.aau4996
  25. Tu, R., Zhang, K., Ackermann, P. W., Bertilson, B. C., Glymour, C., & Zhang, C. (2018). Causal Discovery in the Presence of Missing Data.
  26. https://doi.org/10.48550/arxiv.1807.04010
  27. Qiao, J., Chen, Z., Yu, J., Cai, R., & Hao, Z. (2024). Identification of Causal Structure in the Presence of Missing Data With Additive Noise Model. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v38i18.30036
  28. Niu, Y., & Fei, J. (2021). A Sparsity-Assisted Fault Diagnosis Method Based on Nonconvex Sparse Regularization. In Ieee Access.
  29. https://doi.org/10.1109/access.2021.3073072
  30. Dong, Z., Lin, G., & Nian-dong, C. (2021). An Inexact Penalty Decomposition Method for Sparse Optimization. In Computational Intelligence and Neuroscience. https://doi.org/10.1155/2021/9943519
  31. Kalainathan, D., & Goudet, O. (2019). Causal Discovery Toolbox: Uncover causal relationships in Python.
  32. Kawaguchi, H. (2023). Application of Quantum Computing to a Linear Non-Gaussian Acyclic Model for Novel Medical Knowledge Discovery.
  33. In Plos One. https://doi.org/10.1371/journal.pone.0283933
  34. Kawaguchi, H. (2022). Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery.
  35. https://doi.org/10.21203/rs.3.rs-1264829/v1
  36. Wu, J., & Drton, M. (2023). Partial Homoscedasticity in Causal Discovery With Linear Models. IEEE Journal on Selected Areas in Information Theory, 4, 639–650. https://doi.org/10.1109/JSAIT.2023.3328476
  37. Yu, Y., Chen, J., Gao, T., & Yu, M. (2019). DAG-GNN: DAG Structure Learning With Graph Neural Networks.
  38. https://doi.org/10.48550/arxiv.1904.10098
  39. Huang, Y., Kleindeßner, M., Munishkin, A. A., Varshney, D., Guo, P., & Wang, J. (2021). Benchmarking of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere. In Frontiers in Big Data. https://doi.org/10.3389/fdata.2021.642182
  40. Lee, S., & Honavar, V. (2016). On Learning Causal Models From Relational Data. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v30i1.10417
  41. Ahsan, R., Arbour, D., & Zheleva, E. (2023). Learning Relational Causal Models With Cycles Through Relational Acyclification. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v37i10.26434
  42. Yuan, Y., Ding, X., & Bar-Joseph, Z. (2020). Causal Inference Using Deep Neural Networks. https://doi.org/10.48550/arxiv.2011.12508
  43. Akil, Y. S., & Lateko, A. A. H. (2023). Analisis Kausalitas Antara Produksi Listrik RE Dengan CPI Dan GDP Di Indonesia. In Jurnal Teknik
  44. Elektro Uniba (Jte Uniba). https://doi.org/10.36277/jteuniba.v8i1.234
  45. Naibaho, R. (2020). Analisis Tingkat Pengungkapan Transaksi Pihak Berelasi Dan Pengaruhnya Terhadap Nilai Perusahaan (Studi Pada
  46. Industri Manufaktur). In Abis Accounting and Business Information Systems Journal. https://doi.org/10.22146/abis.v7i4.58861
  47. Guyon, I., Aliferis, C. F., Cooper, G. S., Elisseeff, A., Pellet, J., Spirtes, P., & Statnikov, A. (2011). Causality Workbench.
  48. https://doi.org/10.1093/acprof:oso/9780199574131.003.0026
  49. Lauritzen, S., & Spiegelhalter, D. (1988). Local Computations With Probabilities on Graphical Structures and Their Application to Expert Systems. In Journal of the Royal Statistical Society Series B (Statistical Methodology). https://doi.org/10.1111/j.2517-6161.1988.tb01721.x
  50. Bryon Aragam. (2024). Greedy equivalence search for nonparametric graphical models. Arxiv.
  51. Chickering, M. (2020). Statistically Efficient Greedy Equivalence Search. In J. Peters & D. Sontag (Eds.), Proceedings of the 36th Conference
  52. on Uncertainty in Artificial Intelligence (UAI) (Vol. 124, pp. 241–249). PMLR. https://proceedings.mlr.press/v124/chickering20a.html
Read More

References


Krishna, R. S. (2023). Machine Learning Approaches in Early Lung Cancer Prediction: A Comprehensive Review. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 07(09). https://doi.org/10.55041/IJSREM25584

P.R., R., Nair, R. A. S., & G., V. (2019). A Comparative Study of Lung Cancer Detection using Machine Learning Algorithms. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–4. https://doi.org/10.1109/ICECCT.2019.8869001

Castro, D. C. de, Walker, I. D., & Glocker, B. (2020). Causality Matters in Medical Imaging. In Nature Communications.

https://doi.org/10.1038/s41467-020-17478-w

Doupé, P., Faghmous, J. H., & Basu, S. (2019). Machine Learning for Health Services Researchers. In Value in Health.

https://doi.org/10.1016/j.jval.2019.02.012

Nauta, M., Bucur, D., & Seifert, C. (2019). Causal Discovery with Attention-Based Convolutional Neural Networks. Machine Learning and Knowledge Extraction, 1(1), 312–340. https://doi.org/10.3390/make1010019

Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7). https://doi.org/10.1063/1.5025050

Xie, N.-N., Hu, L., & Li, T.-H. (2015). Lung Cancer Risk Prediction Method Based on Feature Selection and Artificial Neural Network. Asian Pacific Journal of Cancer Prevention, 15(23), 10539–10542. https://doi.org/10.7314/APJCP.2014.15.23.10539

Niu, W., Gao, Z., Song, L., & Li, L. (2024). Comprehensive Review and Empirical Evaluation of Causal Discovery Algorithms for Numerical Data. http://arxiv.org/abs/2407.13054

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinović, D. (2019). Detecting and Quantifying Causal Associations in Large Nonlinear Time Series Datasets. In Science Advances. https://doi.org/10.1126/sciadv.aau4996

Schreiber, T. (2000). Measuring Information Transfer. In Physical Review Letters. https://doi.org/10.1103/physrevlett.85.461

Shimizu, S., Hoyer, P. O., & Hyvärinen, A. (2009). Estimation of Linear Non-Gaussian Acyclic Models for Latent Factors. In Neurocomputing.

https://doi.org/10.1016/j.neucom.2008.11.018

Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., López-Paz, D., & Sebag, M. (2018). Learning Functional Causal Models With Generative Neural Networks. https://doi.org/10.1007/978-3-319-98131-4_3

Bühlmann, P., Peters, J., & Ernest, J. (2014). CAM: Causal Additive Models, High-Dimensional Order Search and Penalized Regression. In The Annals of Statistics. https://doi.org/10.1214/14-aos1260

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. In Machine Learning. https://doi.org/10.1007/s10994-006-6889-7

David Maxwell Chickering. (1996). Learning bayesian networks is np-complete. Learning from data: Artificial intelligence and statistics V: Vol. V. Springer.

Singh, K., Gupta, G., Tewari, V., & Shroff, G. (2018). Comparative benchmarking of causal discovery algorithms. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, 46–56. https://doi.org/10.1145/3152494.3152499

Cao, L., Su, J., Cao, Y., Siang, L. C., Li, J., Saddler, J., & Gopaluni, R. B. (2022). Causal Discovery Based on Observational Data and Process Knowledge in Industrial Processes. In Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.2c01326

Glymour, C., Zhang, K., & Spirtes, P. (2019). Review of Causal Discovery Methods Based on Graphical Models. In Frontiers in Genetics.

https://doi.org/10.3389/fgene.2019.00524

Lu, N. Y., Zhang, K., & Yuan, C. (2021). Improving Causal Discovery By Optimal Bayesian Network Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10), 8741–8748. https://doi.org/10.1609/aaai.v35i10.17059

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5(11). https://doi.org/10.1126/sciadv.aau4996

Tu, R., Zhang, K., Ackermann, P. W., Bertilson, B. C., Glymour, C., & Zhang, C. (2018). Causal Discovery in the Presence of Missing Data.

https://doi.org/10.48550/arxiv.1807.04010

Qiao, J., Chen, Z., Yu, J., Cai, R., & Hao, Z. (2024). Identification of Causal Structure in the Presence of Missing Data With Additive Noise Model. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v38i18.30036

Niu, Y., & Fei, J. (2021). A Sparsity-Assisted Fault Diagnosis Method Based on Nonconvex Sparse Regularization. In Ieee Access.

https://doi.org/10.1109/access.2021.3073072

Dong, Z., Lin, G., & Nian-dong, C. (2021). An Inexact Penalty Decomposition Method for Sparse Optimization. In Computational Intelligence and Neuroscience. https://doi.org/10.1155/2021/9943519

Kalainathan, D., & Goudet, O. (2019). Causal Discovery Toolbox: Uncover causal relationships in Python.

Kawaguchi, H. (2023). Application of Quantum Computing to a Linear Non-Gaussian Acyclic Model for Novel Medical Knowledge Discovery.

In Plos One. https://doi.org/10.1371/journal.pone.0283933

Kawaguchi, H. (2022). Application of quantum computing to a linear non-Gaussian acyclic model for novel medical knowledge discovery.

https://doi.org/10.21203/rs.3.rs-1264829/v1

Wu, J., & Drton, M. (2023). Partial Homoscedasticity in Causal Discovery With Linear Models. IEEE Journal on Selected Areas in Information Theory, 4, 639–650. https://doi.org/10.1109/JSAIT.2023.3328476

Yu, Y., Chen, J., Gao, T., & Yu, M. (2019). DAG-GNN: DAG Structure Learning With Graph Neural Networks.

https://doi.org/10.48550/arxiv.1904.10098

Huang, Y., Kleindeßner, M., Munishkin, A. A., Varshney, D., Guo, P., & Wang, J. (2021). Benchmarking of Data-Driven Causality Discovery Approaches in the Interactions of Arctic Sea Ice and Atmosphere. In Frontiers in Big Data. https://doi.org/10.3389/fdata.2021.642182

Lee, S., & Honavar, V. (2016). On Learning Causal Models From Relational Data. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v30i1.10417

Ahsan, R., Arbour, D., & Zheleva, E. (2023). Learning Relational Causal Models With Cycles Through Relational Acyclification. In Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v37i10.26434

Yuan, Y., Ding, X., & Bar-Joseph, Z. (2020). Causal Inference Using Deep Neural Networks. https://doi.org/10.48550/arxiv.2011.12508

Akil, Y. S., & Lateko, A. A. H. (2023). Analisis Kausalitas Antara Produksi Listrik RE Dengan CPI Dan GDP Di Indonesia. In Jurnal Teknik

Elektro Uniba (Jte Uniba). https://doi.org/10.36277/jteuniba.v8i1.234

Naibaho, R. (2020). Analisis Tingkat Pengungkapan Transaksi Pihak Berelasi Dan Pengaruhnya Terhadap Nilai Perusahaan (Studi Pada

Industri Manufaktur). In Abis Accounting and Business Information Systems Journal. https://doi.org/10.22146/abis.v7i4.58861

Guyon, I., Aliferis, C. F., Cooper, G. S., Elisseeff, A., Pellet, J., Spirtes, P., & Statnikov, A. (2011). Causality Workbench.

https://doi.org/10.1093/acprof:oso/9780199574131.003.0026

Lauritzen, S., & Spiegelhalter, D. (1988). Local Computations With Probabilities on Graphical Structures and Their Application to Expert Systems. In Journal of the Royal Statistical Society Series B (Statistical Methodology). https://doi.org/10.1111/j.2517-6161.1988.tb01721.x

Bryon Aragam. (2024). Greedy equivalence search for nonparametric graphical models. Arxiv.

Chickering, M. (2020). Statistically Efficient Greedy Equivalence Search. In J. Peters & D. Sontag (Eds.), Proceedings of the 36th Conference

on Uncertainty in Artificial Intelligence (UAI) (Vol. 124, pp. 241–249). PMLR. https://proceedings.mlr.press/v124/chickering20a.html

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License