Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 2, May 2025
  4. Articles

Issue

Vol. 10, No. 2, May 2025

Issue Published : May 8, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Optimized BiLSTM-Dense Model for Ultra-Short-Term PV Power Forecasting

https://doi.org/10.22219/kinetik.v10i2.2127
Christianto Tjahyadi
Politeknik Negeri Jakarta
Nana Sutarna
Politeknik Negeri Jakarta
Prihatin Oktivasari
Politeknik Negeri Jakarta

Corresponding Author(s) : Prihatin Oktivasari

prihatin.oktivasari@tik.pnj.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 2, May 2025
Article Published : May 8, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The growing integration of photovoltaic (PV) systems into power grids poses challenges due to the inherent variability in PV output, particularly during rapid weather changes. While existing forecasting methods often struggle to capture these fluctuations, accurate ultra-short-term PV power prediction is critical for grid stability. The study aims to develop an optimized BiLSTM-Dense model that enhances forecasting accuracy by incorporating an additional dense layer. The model is designed to improve forecasting performance over a 30-second horizon. It utilizes a dataset of solar irradiance, PV output power, surface temperature, ambient temperature, humidity, and wind speed, collected in late 2023. Data preprocessing involved normalization and smoothing techniques to enhance robustness. Hyperparameter optimization was performed using grid search. Evaluation results demonstrate the superiority of the proposed model, achieving an MAE of 0.00271 and an RMSE of 0.00806 when paired with the Adam optimizer and Swish activation function. Compared to standard BiLSTM, the BiLSTM-Dense achieved MAE and RMSE improvements of 0.52% and 2.19%, respectively. It also outperformed the LSTM model with reductions of 4.00% in MAE and 2.65% in RMSE, and significantly surpassed ARIMA, reducing MAE by 98.87% and RMSE by 97.21%. These findings highlight the model’s ability to capture complex, non-linear dependencies in PV output data, outperforming conventional approaches like ARIMA, which rely on linear assumptions, and simpler architectures like LSTM, which lack bidirectional context integration.

Keywords

Bidirectional LSTM Ultra-short-term Forecasting Photovoltaic Power Prediction Short-term Prediction Deep Learning Optimization Grid Stability
Tjahyadi, C., Sutarna, N., & Oktivasari , P. . (2025). Optimized BiLSTM-Dense Model for Ultra-Short-Term PV Power Forecasting. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(2). https://doi.org/10.22219/kinetik.v10i2.2127
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. T. K. Abdus Salam Howlader, Md Humaun Kabir, S M Shafkat Newaz, “INTEGRATING SOLAR POWER WITH EXISTING GRIDS: STRATEGIES, TECHNOLOGIES, AND CHALLENGES – A REVIEW,” Glob. MAINSTREAM J., vol. 1, no. 2, pp. 48–62, May 2024, doi: 10.62304/ijse.v1i2.142.
  2. Q. Hassan et al., “Enhancing smart grid integrated renewable distributed generation capacities: Implications for sustainable energy transformation,” Sustain. Energy Technol. Assessments, vol. 66, p. 103793, Jun. 2024, doi: 10.1016/j.seta.2024.103793.
  3. D. Díaz-Bedoya, M. González-Rodríguez, J.-M. Clairand, X. Serrano-Guerrero, and G. Escrivá-Escrivá, “Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities,” Energy Convers. Manag., vol. 296, p. 117618, Nov. 2023, doi: 10.1016/j.enconman.2023.117618.
  4. Wisdom Samuel Udo, Jephta Mensah Kwakye, Darlington Eze Ekechukwu, and Olorunshogo Benjamin Ogundipe, “PREDICTIVE ANALYTICS FOR ENHANCING SOLAR ENERGY FORECASTING AND GRID INTEGRATION,” Eng. Sci. Technol. J., vol. 4, no. 6, pp. 589–602, Dec. 2023, doi: 10.51594/estj.v4i6.1394.
  5. K. Hu, Z. Fu, C. Lang, W. Li, Q. Tao, and B. Wang, “Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer,” Sustainability, vol. 16, no. 14, p. 5940, Jul. 2024, doi: 10.3390/su16145940.
  6. F.-F. Liu, S.-C. Chu, C.-C. Hu, J. Watada, and J.-S. Pan, “An effective QUATRE algorithm based on reorganized mechanism and its application for parameter estimation in improved photovoltaic module,” Heliyon, vol. 9, no. 6, p. e16468, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16468.
  7. O. Doelle, N. Klinkenberg, A. Amthor, and C. Ament, “Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks,” Energies, vol. 16, no. 2, p. 646, Jan. 2023, doi: 10.3390/en16020646.
  8. J. Gaboitaolelwe, A. M. Zungeru, A. Yahya, C. K. Lebekwe, D. N. Vinod, and A. O. Salau, “Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison,” IEEE Access, vol. 11, pp. 40820–40845, 2023, doi: 10.1109/ACCESS.2023.3270041.
  9. A. Abdellatif et al., “Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model,” Sustainability, vol. 14, no. 17, p. 11083, Sep. 2022, doi: 10.3390/su141711083.
  10. A. F. Amiri, A. Chouder, H. Oudira, S. Silvestre, and S. Kichou, “Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection,” Energies , vol. 17, no. 13, p. 3078, Jun. 2024, doi: 10.3390/en17133078.
  11. M. M. Taye, “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions,” Computers, vol. 12, no. 5, p. 91, Apr. 2023, doi: 10.3390/computers12050091.
  12. H. Agarwal, G. Mahajan, A. Shrotriya, and D. Shekhawat, “Predictive Data Analysis: Leveraging RNN and LSTM Techniques for Time Series Dataset,” Procedia Comput. Sci., vol. 235, pp. 979–989, 2024, doi: 10.1016/j.procs.2024.04.093.
  13. L. Uma Maheshwari, G. Vallathan, K. Govindharaju, and D. . Geriyaashakthi, “Forecasting and Analysis of IoT Data by Employing Long Short-Term Memory (LSTM) Networks,” in 2023 International Conference on Emerging Research in Computational Science (ICERCS), IEEE, Dec. 2023, pp. 1–7. doi: 10.1109/ICERCS57948.2023.10434142.
  14. H. Yadav and A. Thakkar, “NOA-LSTM: An efficient LSTM cell architecture for time series forecasting,” Expert Syst. Appl., vol. 238, p. 122333, Mar. 2024, doi: 10.1016/j.eswa.2023.122333.
  15. Q. Kang, D. Yu, K. H. Cheong, and Z. Wang, “Deterministic convergence analysis for regularized long short-term memory and its application to regression and multi-classification problems,” Eng. Appl. Artif. Intell., vol. 133, p. 108444, Jul. 2024, doi: 10.1016/j.engappai.2024.108444.
  16. C. Qin, L. Chen, Z. Cai, M. Liu, and L. Jin, “Long short-term memory with activation on gradient,” Neural Networks, vol. 164, pp. 135–145, Jul. 2023, doi: 10.1016/j.neunet.2023.04.026.
  17. B. He, L. Li, Y. Bo, and J. Zhou, “Bi-directional LSTM-GRU Based Time Series Forecasting Approach,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 2, pp. 222–231, Jul. 2024, doi: 10.62051/ijcsit.v3n2.26.
  18. Y. Fan, Q. Tang, Y. Guo, and Y. Wei, “BiLSTM-MLAM: A Multi-Scale Time Series Prediction Model for Sensor Data Based on Bi-LSTM and Local Attention Mechanisms,” Sensors, vol. 24, no. 12, p. 3962, Jun. 2024, doi: 10.3390/s24123962.
  19. L. Wencheng and M. Zhizhong, “Short-Term Photovoltaic Power Forecasting Using Enhanced Bidirectional Long Short-Term Memory Networks,” in 2024 36th Chinese Control and Decision Conference (CCDC), IEEE, May 2024, pp. 3308–3312. doi: 10.1109/ccdc62350.2024.10587916.
  20. T. Anu Shalini and B. Sri Revathi, “Hybrid power generation forecasting using CNN based BILSTM method for renewable energy systems,” Automatika, vol. 64, no. 1, pp. 127–144, Jan. 2023, doi: 10.1080/00051144.2022.2118101.
  21. N. Sutarna, C. Tjahyadi, P. Oktivasari, M. Dwiyaniti, and Tohazen, “Hyperparameter Tuning Impact on Deep Learning Bi-LSTM for Photovoltaic Power Forecasting,” J. Robot. Control, vol. 5, no. 3, pp. 677–693, Mar. 2024, doi: 10.18196/jrc.v5i3.21120.
  22. G. Li, S. Xie, B. Wang, J. Xin, Y. Li, and S. Du, “Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach,” IEEE Access, vol. 8, pp. 175871–175880, 2020, doi: 10.1109/ACCESS.2020.3025860.
  23. J. Xie, B. Chen, X. Gu, F. Liang, and X. Xu, “Self-Attention-Based BiLSTM Model for Short Text Fine-Grained Sentiment Classification,” IEEE Access, vol. 7, pp. 180558–180570, 2019, doi: 10.1109/ACCESS.2019.2957510.
  24. N. Sutarna, C. Tjahyadi, P. Oktivasari, M. Dwiyaniti, and Tohazen, “Machine Learning Algorithm and Modeling in Solar Irradiance Forecasting,” in 2023 6th International Conference of Computer and Informatics Engineering (IC2IE), IEEE, Sep. 2023, pp. 221–225. doi: 10.1109/IC2IE60547.2023.10330942.
  25. D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.
  26. D. S. K. Karunasingha, “Root mean square error or mean absolute error? Use their ratio as well,” Inf. Sci. (Ny)., vol. 585, pp. 609–629, Mar. 2022, doi: 10.1016/j.ins.2021.11.036.
  27. D. G. Taslim and I. M. Murwantara, “Comparative analysis of ARIMA and LSTM for predicting fluctuating time series data,” Bull. Electr. Eng. Informatics, vol. 13, no. 3, pp. 1943–1951, Jun. 2024, doi: 10.11591/eei.v13i3.6034.
Read More

References


T. K. Abdus Salam Howlader, Md Humaun Kabir, S M Shafkat Newaz, “INTEGRATING SOLAR POWER WITH EXISTING GRIDS: STRATEGIES, TECHNOLOGIES, AND CHALLENGES – A REVIEW,” Glob. MAINSTREAM J., vol. 1, no. 2, pp. 48–62, May 2024, doi: 10.62304/ijse.v1i2.142.

Q. Hassan et al., “Enhancing smart grid integrated renewable distributed generation capacities: Implications for sustainable energy transformation,” Sustain. Energy Technol. Assessments, vol. 66, p. 103793, Jun. 2024, doi: 10.1016/j.seta.2024.103793.

D. Díaz-Bedoya, M. González-Rodríguez, J.-M. Clairand, X. Serrano-Guerrero, and G. Escrivá-Escrivá, “Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities,” Energy Convers. Manag., vol. 296, p. 117618, Nov. 2023, doi: 10.1016/j.enconman.2023.117618.

Wisdom Samuel Udo, Jephta Mensah Kwakye, Darlington Eze Ekechukwu, and Olorunshogo Benjamin Ogundipe, “PREDICTIVE ANALYTICS FOR ENHANCING SOLAR ENERGY FORECASTING AND GRID INTEGRATION,” Eng. Sci. Technol. J., vol. 4, no. 6, pp. 589–602, Dec. 2023, doi: 10.51594/estj.v4i6.1394.

K. Hu, Z. Fu, C. Lang, W. Li, Q. Tao, and B. Wang, “Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer,” Sustainability, vol. 16, no. 14, p. 5940, Jul. 2024, doi: 10.3390/su16145940.

F.-F. Liu, S.-C. Chu, C.-C. Hu, J. Watada, and J.-S. Pan, “An effective QUATRE algorithm based on reorganized mechanism and its application for parameter estimation in improved photovoltaic module,” Heliyon, vol. 9, no. 6, p. e16468, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16468.

O. Doelle, N. Klinkenberg, A. Amthor, and C. Ament, “Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks,” Energies, vol. 16, no. 2, p. 646, Jan. 2023, doi: 10.3390/en16020646.

J. Gaboitaolelwe, A. M. Zungeru, A. Yahya, C. K. Lebekwe, D. N. Vinod, and A. O. Salau, “Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison,” IEEE Access, vol. 11, pp. 40820–40845, 2023, doi: 10.1109/ACCESS.2023.3270041.

A. Abdellatif et al., “Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model,” Sustainability, vol. 14, no. 17, p. 11083, Sep. 2022, doi: 10.3390/su141711083.

A. F. Amiri, A. Chouder, H. Oudira, S. Silvestre, and S. Kichou, “Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection,” Energies , vol. 17, no. 13, p. 3078, Jun. 2024, doi: 10.3390/en17133078.

M. M. Taye, “Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions,” Computers, vol. 12, no. 5, p. 91, Apr. 2023, doi: 10.3390/computers12050091.

H. Agarwal, G. Mahajan, A. Shrotriya, and D. Shekhawat, “Predictive Data Analysis: Leveraging RNN and LSTM Techniques for Time Series Dataset,” Procedia Comput. Sci., vol. 235, pp. 979–989, 2024, doi: 10.1016/j.procs.2024.04.093.

L. Uma Maheshwari, G. Vallathan, K. Govindharaju, and D. . Geriyaashakthi, “Forecasting and Analysis of IoT Data by Employing Long Short-Term Memory (LSTM) Networks,” in 2023 International Conference on Emerging Research in Computational Science (ICERCS), IEEE, Dec. 2023, pp. 1–7. doi: 10.1109/ICERCS57948.2023.10434142.

H. Yadav and A. Thakkar, “NOA-LSTM: An efficient LSTM cell architecture for time series forecasting,” Expert Syst. Appl., vol. 238, p. 122333, Mar. 2024, doi: 10.1016/j.eswa.2023.122333.

Q. Kang, D. Yu, K. H. Cheong, and Z. Wang, “Deterministic convergence analysis for regularized long short-term memory and its application to regression and multi-classification problems,” Eng. Appl. Artif. Intell., vol. 133, p. 108444, Jul. 2024, doi: 10.1016/j.engappai.2024.108444.

C. Qin, L. Chen, Z. Cai, M. Liu, and L. Jin, “Long short-term memory with activation on gradient,” Neural Networks, vol. 164, pp. 135–145, Jul. 2023, doi: 10.1016/j.neunet.2023.04.026.

B. He, L. Li, Y. Bo, and J. Zhou, “Bi-directional LSTM-GRU Based Time Series Forecasting Approach,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 2, pp. 222–231, Jul. 2024, doi: 10.62051/ijcsit.v3n2.26.

Y. Fan, Q. Tang, Y. Guo, and Y. Wei, “BiLSTM-MLAM: A Multi-Scale Time Series Prediction Model for Sensor Data Based on Bi-LSTM and Local Attention Mechanisms,” Sensors, vol. 24, no. 12, p. 3962, Jun. 2024, doi: 10.3390/s24123962.

L. Wencheng and M. Zhizhong, “Short-Term Photovoltaic Power Forecasting Using Enhanced Bidirectional Long Short-Term Memory Networks,” in 2024 36th Chinese Control and Decision Conference (CCDC), IEEE, May 2024, pp. 3308–3312. doi: 10.1109/ccdc62350.2024.10587916.

T. Anu Shalini and B. Sri Revathi, “Hybrid power generation forecasting using CNN based BILSTM method for renewable energy systems,” Automatika, vol. 64, no. 1, pp. 127–144, Jan. 2023, doi: 10.1080/00051144.2022.2118101.

N. Sutarna, C. Tjahyadi, P. Oktivasari, M. Dwiyaniti, and Tohazen, “Hyperparameter Tuning Impact on Deep Learning Bi-LSTM for Photovoltaic Power Forecasting,” J. Robot. Control, vol. 5, no. 3, pp. 677–693, Mar. 2024, doi: 10.18196/jrc.v5i3.21120.

G. Li, S. Xie, B. Wang, J. Xin, Y. Li, and S. Du, “Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach,” IEEE Access, vol. 8, pp. 175871–175880, 2020, doi: 10.1109/ACCESS.2020.3025860.

J. Xie, B. Chen, X. Gu, F. Liang, and X. Xu, “Self-Attention-Based BiLSTM Model for Short Text Fine-Grained Sentiment Classification,” IEEE Access, vol. 7, pp. 180558–180570, 2019, doi: 10.1109/ACCESS.2019.2957510.

N. Sutarna, C. Tjahyadi, P. Oktivasari, M. Dwiyaniti, and Tohazen, “Machine Learning Algorithm and Modeling in Solar Irradiance Forecasting,” in 2023 6th International Conference of Computer and Informatics Engineering (IC2IE), IEEE, Sep. 2023, pp. 221–225. doi: 10.1109/IC2IE60547.2023.10330942.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

D. S. K. Karunasingha, “Root mean square error or mean absolute error? Use their ratio as well,” Inf. Sci. (Ny)., vol. 585, pp. 609–629, Mar. 2022, doi: 10.1016/j.ins.2021.11.036.

D. G. Taslim and I. M. Murwantara, “Comparative analysis of ARIMA and LSTM for predicting fluctuating time series data,” Bull. Electr. Eng. Informatics, vol. 13, no. 3, pp. 1943–1951, Jun. 2024, doi: 10.11591/eei.v13i3.6034.

Author biographies is not available.
Download this PDF file
Statistic
Read Counter : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License