Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 2, May 2025
  4. Articles

Issue

Vol. 10, No. 2, May 2025

Issue Published : May 31, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Sentiment Analysis on Social Media Using CNN-RNN Hybrid: A Case Study of Indonesian Presidential Candidate

https://doi.org/10.22219/kinetik.v10i2.2125
Slamet Riyadi
Universitas Muhammadiyah Yogyakarta
Fayyadh Daffa
Universitas Muhammadiyah Yogyakarta
Cahya Damarjati
Universitas Muhammadiyah Yogyakarta
Megat Syahirul Amin Megat Ali
Universiti Teknologi MARA

Corresponding Author(s) : Slamet Riyadi

riyadi@umy.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 2, May 2025
Article Published : May 31, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Research on sentiment analysis for Presidential Candidate 01 on social media cannot be ignored because there is no in-depth understanding of public perceptions and opinions circulating online. The CNN model is quite commonly used for sentiment analysis; however, this model still has quite low accuracy so modifications need to be made. This research aims to increase the accuracy of sentiment analysis through the application of a modified Convolutional Neural Network (CNN) method. The research process includes collecting tweet data related to Presidential Candidate 01 using crawling techniques, data preprocessing, sentiment labeling, data balancing, as well as dividing the dataset into training, validation and test data. The CNN model is modified with additional layers to improve the performance. The model is evaluated by measuring its accuracy, precision, recall, and F1 Score. The research results show that the modified CNN-RNN Hybrid model with the Upsampling method achieves an accuracy of 94% and F1 Score of 0.95, while the CNN-RNN Hybrid model has an accuracy of 86% and F1 Score of 0.82, the CNN Model has an accuracy of 90% and F1 Score of 0.88, and the RNN model has an accuracy of 88% and F1 Score of 0.84, which are higher compared to the Naïve Bayes and LSTM methods used in the previous research. Modifying the CNN method can significantly increase the accuracy of sentiment analysis for Presidential Candidate 01, so that it can become a more effective tool for understanding public perceptions and improving political campaign strategies.

Keywords

Sentiment Analysis Deep Learning Overfitting Oversampling Imbalanced Data
Riyadi, S., Fayyadh Daffa, Cahya Damarjati, & Megat Syahirul Amin Megat Ali. (2025). Sentiment Analysis on Social Media Using CNN-RNN Hybrid: A Case Study of Indonesian Presidential Candidate. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(2). https://doi.org/10.22219/kinetik.v10i2.2125
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” International Journal of Technology, vol. 14, no. 6, pp. 1288–1298, 2023. https://doi.org/10.14716/ijtech.v14i6.6632
  2. M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 265, Apr. 2022. https://doi.org/10.30865/jurikom.v9i2.3989
  3. M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya, “ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis,” Future Generation Computer Systems, vol. 115, pp. 279–294, Feb. 2021. https://doi.org/10.1016/j.future.2020.08.005
  4. C. N. Dang, M. N. Moreno-García, and F. De La Prieta, “Hybrid Deep Learning Models for Sentiment Analysis,” Complexity, vol. 2021, 2021. https://doi.org/10.1155/2021/9986920
  5. S. Sachin, A. Tripathi, N. Mahajan, S. Aggarwal, and P. Nagrath, “Sentiment Analysis Using Gated Recurrent Neural Networks,” Mar. 01, 2020, Springer. https://doi.org/10.1007/s42979-020-0076-y
  6. M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” 2021.
  7. Ridho Darman, “Analisis Sentimen Respons Twitter Terhadap Persyaratan Badan Penyelenggara Jaminan Sosial Kantor Pertanahan” Kantor Pertanahan Kabupaten Agam, K. Agraria dan Tata Ruang, B. Lubuk Basung, K. Agam, and P. Sumatera Barat, “Jurnal Widya Bhumi,” 2023. https://doi.org/10.31292/wb.v3i2.61
  8. M. Li and Y. Shi, “Sentiment analysis and prediction model based on Chinese government affairs microblogs,” Heliyon, vol. 9, no. 8, Aug. 2023. https://doi.org/10.1016/j.heliyon.2023.e19091
  9. M. Işik and H. Dağ, “The impact of text preprocessing on the prediction of review ratings,” 2020, Turkiye Klinikleri. https://doi.org/10.3906/elk-1907-46
  10. J. Khatib Sulaiman, D. Setiyawati, N. Cahyono, and U. Amikom Yogyakarta, “Analisa Sentimen Pengguna Sosial Media Twitter Terhadap Perokok di Indonesia,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 1, pp. 2023–262, 2023. https://doi.org/10.33022/ijcs.v12i1.3154
  11. S. Dewi and D. B. Arianto, “Twitter Sentiment Analysis Towards Qatar as Host of The 2022 World Cup Using Textblob”. https://doi.org/10.55324/josr.v2i2.615
  12. H. Dia, “Evaluating the Accuracy of Sentiment Analysis Models when Applied to Social Media Texts; Evaluating the Accuracy of Sentiment Analysis Models when Applied to Social Media Texts; Utvärdering av noggrannheten hos sentimentanalysmodeller när de tillämpas på texter från sociala medier.”
  13. C. Magnolia, A. Nurhopipah, D. Bagus, and A. Kusuma, “Edu Komputika Journal Penanganan Imbalanced Dataset untuk Klasifikasi Komentar Program Kampus Merdeka Pada Aplikasi Twitter,” 2022. https://doi.org/10.15294/edukomputika.v9i2.61854
  14. J. Prasetya, “Leibniz : Jurnal Matematika Penerapan Klasifikasi Naive Bayes Dengan Algoritma Random Oversampling dan Random Undersampling Pada Data Tidak Seimbang Cervical Cancer Risk Factors,” vol. 2, no. 2. https://doi.org/10.59632/leibniz.v2i2.173
  15. A. Q. Md, S. Kulkarni, C. J. Joshua, T. Vaichole, S. Mohan, and C. Iwendi, “Enhanced Preprocessing Approach Using Ensemble Machine Learning Algorithms for Detecting Liver Disease,” Biomedicines, vol. 11, no. 2, Feb. 2023. https://doi.org/10.3390/biomedicines11020581
  16. L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 746–757, 2023. https://doi.org/10.26555/jiteki.v9i3.26490
  17. M. M. A. Monshi, J. Poon, V. Chung, and F. M. Monshi, “CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR,” Comput Biol Med, vol. 133, Jun. 2021. https://doi.org/10.1016/j.compbiomed.2021.104375
  18. L. Zhao and Z. Zhang, “A improved pooling method for convolutional neural networks,” Sci Rep, vol. 14, no. 1, Dec. 2024. https://doi.org/10.1038/s41598-024-51258-6
  19. H. Asrawi, E. Utami, and A. Yaqin, “LSTM and Bidirectional GRU Comparison for Text Classification,” sinkron, vol. 8, no. 4, pp. 2264–2274, Oct. 2023. https://doi.org/10.33395/sinkron.v8i4.12899
  20. M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 3, p. 209, Jul. 2019. https://doi.org/10.22146/ijccs.41236
  21. F. A. Irawan and D. A. Rochmah, “Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19,” JURNAL INFORMATIKA, vol. 9, no. 2, 2022. https://doi.org/10.31294/inf.v9i2.13257
  22. R. Yacouby Amazon Alexa and D. Axman Amazon Alexa, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models.” https://doi.org/10.18653/v1/2020.eval4nlp-1.9
  23. D. Hidayatul Qudsi, J. Hakim Lubis, K. Umam Syaliman, and N. Fadilah Najwa, “Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Convolutional Neural Network,” 2021. https://doi.org/10.25126/jtiik.202184842
  24. S. Pavlitskaya, J. Oswald, and J. M. Zöllner, “Measuring Overfitting in Convolutional Neural Networks using Adversarial Perturbations and Label Noise,” Sep. 2022. https://doi.org/10.48550/arXiv.2209.13382
  25. M. Ainur Rohman and T. Chamidy, “Bidirectional GRU dengan Attention Mechanism pada Analisis Sentimen PLN Mobile Bidirectional GRU with Attention Mechanism on Sentiment Analysis of PLN Mobile.” https://doi.org/10.33633/tc.v22i2.7876
Read More

References


F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” International Journal of Technology, vol. 14, no. 6, pp. 1288–1298, 2023. https://doi.org/10.14716/ijtech.v14i6.6632

M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 2, p. 265, Apr. 2022. https://doi.org/10.30865/jurikom.v9i2.3989

M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya, “ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis,” Future Generation Computer Systems, vol. 115, pp. 279–294, Feb. 2021. https://doi.org/10.1016/j.future.2020.08.005

C. N. Dang, M. N. Moreno-García, and F. De La Prieta, “Hybrid Deep Learning Models for Sentiment Analysis,” Complexity, vol. 2021, 2021. https://doi.org/10.1155/2021/9986920

S. Sachin, A. Tripathi, N. Mahajan, S. Aggarwal, and P. Nagrath, “Sentiment Analysis Using Gated Recurrent Neural Networks,” Mar. 01, 2020, Springer. https://doi.org/10.1007/s42979-020-0076-y

M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” 2021.

Ridho Darman, “Analisis Sentimen Respons Twitter Terhadap Persyaratan Badan Penyelenggara Jaminan Sosial Kantor Pertanahan” Kantor Pertanahan Kabupaten Agam, K. Agraria dan Tata Ruang, B. Lubuk Basung, K. Agam, and P. Sumatera Barat, “Jurnal Widya Bhumi,” 2023. https://doi.org/10.31292/wb.v3i2.61

M. Li and Y. Shi, “Sentiment analysis and prediction model based on Chinese government affairs microblogs,” Heliyon, vol. 9, no. 8, Aug. 2023. https://doi.org/10.1016/j.heliyon.2023.e19091

M. Işik and H. Dağ, “The impact of text preprocessing on the prediction of review ratings,” 2020, Turkiye Klinikleri. https://doi.org/10.3906/elk-1907-46

J. Khatib Sulaiman, D. Setiyawati, N. Cahyono, and U. Amikom Yogyakarta, “Analisa Sentimen Pengguna Sosial Media Twitter Terhadap Perokok di Indonesia,” Indonesian Journal of Computer Science Attribution, vol. 12, no. 1, pp. 2023–262, 2023. https://doi.org/10.33022/ijcs.v12i1.3154

S. Dewi and D. B. Arianto, “Twitter Sentiment Analysis Towards Qatar as Host of The 2022 World Cup Using Textblob”. https://doi.org/10.55324/josr.v2i2.615

H. Dia, “Evaluating the Accuracy of Sentiment Analysis Models when Applied to Social Media Texts; Evaluating the Accuracy of Sentiment Analysis Models when Applied to Social Media Texts; Utvärdering av noggrannheten hos sentimentanalysmodeller när de tillämpas på texter från sociala medier.”

C. Magnolia, A. Nurhopipah, D. Bagus, and A. Kusuma, “Edu Komputika Journal Penanganan Imbalanced Dataset untuk Klasifikasi Komentar Program Kampus Merdeka Pada Aplikasi Twitter,” 2022. https://doi.org/10.15294/edukomputika.v9i2.61854

J. Prasetya, “Leibniz : Jurnal Matematika Penerapan Klasifikasi Naive Bayes Dengan Algoritma Random Oversampling dan Random Undersampling Pada Data Tidak Seimbang Cervical Cancer Risk Factors,” vol. 2, no. 2. https://doi.org/10.59632/leibniz.v2i2.173

A. Q. Md, S. Kulkarni, C. J. Joshua, T. Vaichole, S. Mohan, and C. Iwendi, “Enhanced Preprocessing Approach Using Ensemble Machine Learning Algorithms for Detecting Liver Disease,” Biomedicines, vol. 11, no. 2, Feb. 2023. https://doi.org/10.3390/biomedicines11020581

L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 746–757, 2023. https://doi.org/10.26555/jiteki.v9i3.26490

M. M. A. Monshi, J. Poon, V. Chung, and F. M. Monshi, “CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR,” Comput Biol Med, vol. 133, Jun. 2021. https://doi.org/10.1016/j.compbiomed.2021.104375

L. Zhao and Z. Zhang, “A improved pooling method for convolutional neural networks,” Sci Rep, vol. 14, no. 1, Dec. 2024. https://doi.org/10.1038/s41598-024-51258-6

H. Asrawi, E. Utami, and A. Yaqin, “LSTM and Bidirectional GRU Comparison for Text Classification,” sinkron, vol. 8, no. 4, pp. 2264–2274, Oct. 2023. https://doi.org/10.33395/sinkron.v8i4.12899

M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 3, p. 209, Jul. 2019. https://doi.org/10.22146/ijccs.41236

F. A. Irawan and D. A. Rochmah, “Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19,” JURNAL INFORMATIKA, vol. 9, no. 2, 2022. https://doi.org/10.31294/inf.v9i2.13257

R. Yacouby Amazon Alexa and D. Axman Amazon Alexa, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models.” https://doi.org/10.18653/v1/2020.eval4nlp-1.9

D. Hidayatul Qudsi, J. Hakim Lubis, K. Umam Syaliman, and N. Fadilah Najwa, “Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Convolutional Neural Network,” 2021. https://doi.org/10.25126/jtiik.202184842

S. Pavlitskaya, J. Oswald, and J. M. Zöllner, “Measuring Overfitting in Convolutional Neural Networks using Adversarial Perturbations and Label Noise,” Sep. 2022. https://doi.org/10.48550/arXiv.2209.13382

M. Ainur Rohman and T. Chamidy, “Bidirectional GRU dengan Attention Mechanism pada Analisis Sentimen PLN Mobile Bidirectional GRU with Attention Mechanism on Sentiment Analysis of PLN Mobile.” https://doi.org/10.33633/tc.v22i2.7876

Author Biography

Slamet Riyadi, Universitas Muhammadiyah Yogyakarta

Scopus: https://www.scopus.com/authid/detail.uri?authorId=6503991450

Google Scholar: https://scholar.google.com/citations?hl=en&user=bl1BHx8AAAAJ

Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License