Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 2, May 2025
  4. Articles

Issue

Vol. 10, No. 2, May 2025

Issue Published : May 31, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Improvement of AC Bus Voltage Stability with Current Control Inverter

https://doi.org/10.22219/kinetik.v10i2.2107
Bayu Rahmad Nugroho
Universitas PGRI Semarang
Reza Maulidin
Universitas PGRI Semarang
Adhi Kusmantoro
Universitas PGRI Semarang

Corresponding Author(s) : Bayu Rahmad Nugroho

rahmadbayu749@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 2, May 2025
Article Published : May 31, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This research focuses on the development and analysis of a current control method for inverters, which demonstrates superior performance compared to the more conventional voltage control method. Current control in inverters offers several significant advantages, including faster dynamic response, constant switching frequency, and the ability to effectively reduce harmonic distortion, which is often a challenge in modern power systems. Additionally, this method is capable of maintaining system stability even when it had complex load variations and fluctuating operating conditions. In this study, we implement a fuzzy logic approach to simulate current control in an inverter integrated with a photovoltaic (PV) renewable energy system. The simulation results indicate that the proposed current control method not only enhances overall energy efficiency, but also extends the operating range of the inverter, allowing the system to operate optimally under various load conditions.

Keywords

Inverter PV Array Fuzzy Logic Current Control
Nugroho, B. R., Maulidin, R., & Kusmantoro, A. (2025). Improvement of AC Bus Voltage Stability with Current Control Inverter . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(2). https://doi.org/10.22219/kinetik.v10i2.2107
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. C. Zhang, X. Li, X. Xing, B. Zhang, R. Zhang, and B. Duan, “Modeling and Mitigation of Resonance Current for Modified LCL-Type Parallel Inverters with Inverter-Side Current Control,” IEEE Trans Industr Inform, vol. 18, no. 2, pp. 932–942, Feb. 2022. https://doi.org/10.1109/TII.2021.3076090
  2. L. Zhang et al., “A Sensorless Implementation of the Parabolic Current Control for Single-Phase Stand-Alone Inverters,” IEEE Trans Power Electron, vol. 31, no. 5, pp. 3913–3921, May 2016. https://doi.org/10.1109/TPEL.2015.2464292
  3. M. G. Judewicz, S. A. Gonzalez, J. R. Fischer, J. F. Martinez, and D. O. Carrica, “Inverter-side current control of grid-connected voltage source inverters with LCL filter based on generalized predictive control,” IEEE J Emerg Sel Top Power Electron, vol. 6, no. 4, pp. 1732–1743, Dec. 2018. https://doi.org/10.1109/JESTPE.2018.2826365
  4. S. Kwak, S. E. Kim, and J. C. Park, “Predictive Current Control Methods with Reduced Current Errors and Ripples for Single-Phase Voltage Source Inverters,” IEEE Trans Industr Inform, vol. 11, no. 5, pp. 1006–1016, Oct. 2015. https://doi.org/10.1109/TII.2015.2463757
  5. Y. Sun, Y. Liu, M. Su, H. Han, X. Li, and X. Li, “Topology and Control of a Split-Capacitor Four-Wire Current Source Inverter with Leakage Current Suppression Capability,” IEEE Trans Power Electron, vol. 33, no. 12, pp. 10803–10814, Dec. 2018. https://doi.org/10.1109/TPEL.2017.2771537
  6. C. Tan, Q. Chen, K. Zhou, and L. Zhang, “A Simple High-Performance Current Control Strategy for V2G Three-Phase Four-Leg Inverter with LCL Filter,” IEEE Transactions on Transportation Electrification, vol. 5, no. 3, pp. 695–701, 2019. https://doi.org/10.1109/TTE.2019.2936684
  7. L. Zhang, B. Gu, J. Dominic, B. Chen, C. Zheng, and J. S. Lai, “A dead-time compensation method for parabolic current control with improved current tracking and enhanced stability range,” IEEE Trans Power Electron, vol. 30, no. 7, pp. 3892–3902, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2339302
  8. R. Viswadev, A. Mudlapur, V. V. Ramana, B. Venkatesaperumal, and S. Mishra, “A Novel AC Current Sensorless Hysteresis Control for Grid-Tie Inverters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2577–2581, Nov. 2020. https://doi.org/10.1109/TCSII.2019.2960289
  9. A. Abdelhakim, P. Mattavelli, D. Yang, and F. Blaabjerg, “Coupled-Inductor-Based DC Current Measurement Technique for Transformerless Grid-Tied Inverters,” IEEE Trans Power Electron, vol. 33, no. 1, pp. 18–23, Jan. 2018. https://doi.org/10.1109/TPEL.2017.2712197
  10. G. Qiu, J. Liao, B. Wu, and Z. Shi, “Suppressing DC Current Injection in Transformerless Grid-Connected Inverter Using a Customized Current Sensor,” IEEE Trans Power Electron, vol. 36, no. 10, pp. 11003–11008, Oct. 2021. https://doi.org/10.1109/TPEL.2021.3071195
  11. B. Yu, W. Song, Y. Guo, J. Li, and M. S. R. Saeed, “Virtual Voltage Vector-Based Model Predictive Current Control for Five-Phase VSIs with Common-Mode Voltage Reduction,” IEEE Transactions on Transportation Electrification, vol. 7, no. 2, pp. 706–717, Jun. 2021. https://doi.org/10.1109/TTE.2020.3030793
  12. C. A. Agustin, J. Te Yu, C. K. Lin, J. Jai, and Y. S. Lai, “Triple-Voltage-Vector Model-Free Predictive Current Control for Four-Switch Three-Phase Inverter-Fed SPMSM Based on Discrete-Space-Vector Modulation,” IEEE Access, vol. 9, pp. 60352–60363, 2021. https://doi.org/10.1109/ACCESS.2021.3074067
  13. Q. Huang and A. Q. Huang, “Variable frequency average current mode control for zvs symmetrical dual-buck h-bridge all-gan inverter,” IEEE J Emerg Sel Top Power Electron, vol. 8, no. 4, pp. 4416–4427, Dec. 2020. https://doi.org/10.1109/JESTPE.2019.2940270
  14. Z. Liang, X. Lin, Y. Kang, B. Gao, and H. Lei, “Short Circuit Current Characteristics Analysis and Improved Current Limiting Strategy for Three-phase Three-leg Inverter under Asymmetric Short Circuit Fault,” IEEE Trans Power Electron, vol. 33, no. 8, pp. 7214–7228, Aug. 2018. https://doi.org/10.1109/TPEL.2017.2759161
  15. Z. Xin, P. Mattavelli, W. Yao, Y. Yang, F. Blaabjerg, and P. C. Loh, “Mitigation of Grid-Current Distortion for LCL-Filtered Voltage-Source Inverter with Inverter-Current Feedback Control,” IEEE Trans Power Electron, vol. 33, no. 7, pp. 6248–6261, Jul. 2018. https://doi.org/10.1109/TPEL.2017.2740946
  16. H. C. Vu and H. H. Lee, “Model-Predictive Current Control Scheme for Seven-Phase Voltage-Source Inverter with Reduced Common-Mode Voltage and Current Harmonics,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, pp. 3610–3621, Jun. 2021. https://doi.org/10.1109/JESTPE.2020.3009392
  17. A. T. Nguyen, S. W. Ryu, A. U. Rehman, H. H. Choi, and J. W. Jung, “Improved Continuous Control Set Model Predictive Control for Three-Phase CVCF Inverters: Fuzzy Logic Approach,” IEEE Access, vol. 9, pp. 75158–75168, 2021. https://doi.org/10.1109/ACCESS.2021.3081718
  18. W. Song, C. Xue, X. Wu, and B. Yu, “Modulated Finite-Control-Set Model Predictive Current Control for Five-Phase Voltage-Source Inverter,” IEEE Transactions on Transportation Electrification, vol. 7, no. 2, pp. 718–729, Jun. 2021. https://doi.org/10.1109/TTE.2020.3019208
  19. M. Hofmann, M. Schaefer, D. Montesinos-Miracle, and A. Ackva, “Improved Direct Current Control for Grid-Connected Multilevel Inverters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8289–8297, Sep. 2021. https://doi.org/10.1109/TIE.2020.3018055
  20. I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Feb. 2022. https://doi.org/10.22219/kinetik.v7i1.1355
  21. M. A. Hannan, Z. A. Ghani, A. Mohamed, and M. N. Uddin, “Real-Time Testing of a Fuzzy-Logic-Controller-Based Grid-Connected Photovoltaic Inverter System,” IEEE Trans Ind Appl, vol. 51, no. 6, pp. 4775–4784, Nov. 2015. https://doi.org/10.1109/TIA.2015.2455025
  22. A. Kusmantoro, “Multi-Inverter Coordinated Control on AC Microgrid for Increased Load Power,” in 2023 6th International Conference on Vocational Education and Electrical Engineering: Integrating Scalable Digital Connectivity, Intelligence Systems, and Green Technology for Education and Sustainable Community Development, ICVEE 2023 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 90–95. https://doi.org/10.1109/ICVEE59738.2023.10348326
  23. H. Jafarian, R. Cox, J. H. Enslin, S. Bhowmik, and B. Parkhideh, “Decentralized Active and Reactive Power Control for an AC-Stacked PV Inverter with Single Member Phase Compensation,” in IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers Inc., Jan. 2018, pp. 345–355. https://doi.org/10.1109/TIA.2017.2761831
  24. Y. Yang, K. Zhou, and F. Blaabjerg, “Current Harmonics from Single-Phase Grid-Connected Inverters-Examination and Suppression,” IEEE J Emerg Sel Top Power Electron, vol. 4, no. 1, pp. 221–233, Mar. 2016. https://doi.org/10.1109/JESTPE.2015.2504845
  25. P. Alemi, C. J. Bae, and D. C. Lee, “Resonance Suppression Based on PR Control for Single-Phase Grid-Connected Inverters With LLCL Filters,” IEEE J Emerg Sel Top Power Electron, vol. 4, no. 2, pp. 459–467, Jun. 2016. https://doi.org/10.1109/JESTPE.2015.2464699
  26. J. Xu, S. Xie, B. Zhang, and Q. Qian, “Robust Grid Current Control with Impedance-Phase Shaping for LCL-Filtered Inverters in Weak and Distorted Grid,” IEEE Trans Power Electron, vol. 33, no. 12, pp. 10240–10250, Dec. 2018. https://doi.org/10.1109/TPEL.2018.2808604
  27. A. Kusmantoro and I. Farikhah, “Power management on DC microgrid with new DC coupling based on fuzzy logic,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 2, pp. 620–631, Nov. 2023. https://doi.org/10.11591/ijeecs.v32.i2.pp620-631
Read More

References


C. Zhang, X. Li, X. Xing, B. Zhang, R. Zhang, and B. Duan, “Modeling and Mitigation of Resonance Current for Modified LCL-Type Parallel Inverters with Inverter-Side Current Control,” IEEE Trans Industr Inform, vol. 18, no. 2, pp. 932–942, Feb. 2022. https://doi.org/10.1109/TII.2021.3076090

L. Zhang et al., “A Sensorless Implementation of the Parabolic Current Control for Single-Phase Stand-Alone Inverters,” IEEE Trans Power Electron, vol. 31, no. 5, pp. 3913–3921, May 2016. https://doi.org/10.1109/TPEL.2015.2464292

M. G. Judewicz, S. A. Gonzalez, J. R. Fischer, J. F. Martinez, and D. O. Carrica, “Inverter-side current control of grid-connected voltage source inverters with LCL filter based on generalized predictive control,” IEEE J Emerg Sel Top Power Electron, vol. 6, no. 4, pp. 1732–1743, Dec. 2018. https://doi.org/10.1109/JESTPE.2018.2826365

S. Kwak, S. E. Kim, and J. C. Park, “Predictive Current Control Methods with Reduced Current Errors and Ripples for Single-Phase Voltage Source Inverters,” IEEE Trans Industr Inform, vol. 11, no. 5, pp. 1006–1016, Oct. 2015. https://doi.org/10.1109/TII.2015.2463757

Y. Sun, Y. Liu, M. Su, H. Han, X. Li, and X. Li, “Topology and Control of a Split-Capacitor Four-Wire Current Source Inverter with Leakage Current Suppression Capability,” IEEE Trans Power Electron, vol. 33, no. 12, pp. 10803–10814, Dec. 2018. https://doi.org/10.1109/TPEL.2017.2771537

C. Tan, Q. Chen, K. Zhou, and L. Zhang, “A Simple High-Performance Current Control Strategy for V2G Three-Phase Four-Leg Inverter with LCL Filter,” IEEE Transactions on Transportation Electrification, vol. 5, no. 3, pp. 695–701, 2019. https://doi.org/10.1109/TTE.2019.2936684

L. Zhang, B. Gu, J. Dominic, B. Chen, C. Zheng, and J. S. Lai, “A dead-time compensation method for parabolic current control with improved current tracking and enhanced stability range,” IEEE Trans Power Electron, vol. 30, no. 7, pp. 3892–3902, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2339302

R. Viswadev, A. Mudlapur, V. V. Ramana, B. Venkatesaperumal, and S. Mishra, “A Novel AC Current Sensorless Hysteresis Control for Grid-Tie Inverters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2577–2581, Nov. 2020. https://doi.org/10.1109/TCSII.2019.2960289

A. Abdelhakim, P. Mattavelli, D. Yang, and F. Blaabjerg, “Coupled-Inductor-Based DC Current Measurement Technique for Transformerless Grid-Tied Inverters,” IEEE Trans Power Electron, vol. 33, no. 1, pp. 18–23, Jan. 2018. https://doi.org/10.1109/TPEL.2017.2712197

G. Qiu, J. Liao, B. Wu, and Z. Shi, “Suppressing DC Current Injection in Transformerless Grid-Connected Inverter Using a Customized Current Sensor,” IEEE Trans Power Electron, vol. 36, no. 10, pp. 11003–11008, Oct. 2021. https://doi.org/10.1109/TPEL.2021.3071195

B. Yu, W. Song, Y. Guo, J. Li, and M. S. R. Saeed, “Virtual Voltage Vector-Based Model Predictive Current Control for Five-Phase VSIs with Common-Mode Voltage Reduction,” IEEE Transactions on Transportation Electrification, vol. 7, no. 2, pp. 706–717, Jun. 2021. https://doi.org/10.1109/TTE.2020.3030793

C. A. Agustin, J. Te Yu, C. K. Lin, J. Jai, and Y. S. Lai, “Triple-Voltage-Vector Model-Free Predictive Current Control for Four-Switch Three-Phase Inverter-Fed SPMSM Based on Discrete-Space-Vector Modulation,” IEEE Access, vol. 9, pp. 60352–60363, 2021. https://doi.org/10.1109/ACCESS.2021.3074067

Q. Huang and A. Q. Huang, “Variable frequency average current mode control for zvs symmetrical dual-buck h-bridge all-gan inverter,” IEEE J Emerg Sel Top Power Electron, vol. 8, no. 4, pp. 4416–4427, Dec. 2020. https://doi.org/10.1109/JESTPE.2019.2940270

Z. Liang, X. Lin, Y. Kang, B. Gao, and H. Lei, “Short Circuit Current Characteristics Analysis and Improved Current Limiting Strategy for Three-phase Three-leg Inverter under Asymmetric Short Circuit Fault,” IEEE Trans Power Electron, vol. 33, no. 8, pp. 7214–7228, Aug. 2018. https://doi.org/10.1109/TPEL.2017.2759161

Z. Xin, P. Mattavelli, W. Yao, Y. Yang, F. Blaabjerg, and P. C. Loh, “Mitigation of Grid-Current Distortion for LCL-Filtered Voltage-Source Inverter with Inverter-Current Feedback Control,” IEEE Trans Power Electron, vol. 33, no. 7, pp. 6248–6261, Jul. 2018. https://doi.org/10.1109/TPEL.2017.2740946

H. C. Vu and H. H. Lee, “Model-Predictive Current Control Scheme for Seven-Phase Voltage-Source Inverter with Reduced Common-Mode Voltage and Current Harmonics,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 3, pp. 3610–3621, Jun. 2021. https://doi.org/10.1109/JESTPE.2020.3009392

A. T. Nguyen, S. W. Ryu, A. U. Rehman, H. H. Choi, and J. W. Jung, “Improved Continuous Control Set Model Predictive Control for Three-Phase CVCF Inverters: Fuzzy Logic Approach,” IEEE Access, vol. 9, pp. 75158–75168, 2021. https://doi.org/10.1109/ACCESS.2021.3081718

W. Song, C. Xue, X. Wu, and B. Yu, “Modulated Finite-Control-Set Model Predictive Current Control for Five-Phase Voltage-Source Inverter,” IEEE Transactions on Transportation Electrification, vol. 7, no. 2, pp. 718–729, Jun. 2021. https://doi.org/10.1109/TTE.2020.3019208

M. Hofmann, M. Schaefer, D. Montesinos-Miracle, and A. Ackva, “Improved Direct Current Control for Grid-Connected Multilevel Inverters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8289–8297, Sep. 2021. https://doi.org/10.1109/TIE.2020.3018055

I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Feb. 2022. https://doi.org/10.22219/kinetik.v7i1.1355

M. A. Hannan, Z. A. Ghani, A. Mohamed, and M. N. Uddin, “Real-Time Testing of a Fuzzy-Logic-Controller-Based Grid-Connected Photovoltaic Inverter System,” IEEE Trans Ind Appl, vol. 51, no. 6, pp. 4775–4784, Nov. 2015. https://doi.org/10.1109/TIA.2015.2455025

A. Kusmantoro, “Multi-Inverter Coordinated Control on AC Microgrid for Increased Load Power,” in 2023 6th International Conference on Vocational Education and Electrical Engineering: Integrating Scalable Digital Connectivity, Intelligence Systems, and Green Technology for Education and Sustainable Community Development, ICVEE 2023 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 90–95. https://doi.org/10.1109/ICVEE59738.2023.10348326

H. Jafarian, R. Cox, J. H. Enslin, S. Bhowmik, and B. Parkhideh, “Decentralized Active and Reactive Power Control for an AC-Stacked PV Inverter with Single Member Phase Compensation,” in IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers Inc., Jan. 2018, pp. 345–355. https://doi.org/10.1109/TIA.2017.2761831

Y. Yang, K. Zhou, and F. Blaabjerg, “Current Harmonics from Single-Phase Grid-Connected Inverters-Examination and Suppression,” IEEE J Emerg Sel Top Power Electron, vol. 4, no. 1, pp. 221–233, Mar. 2016. https://doi.org/10.1109/JESTPE.2015.2504845

P. Alemi, C. J. Bae, and D. C. Lee, “Resonance Suppression Based on PR Control for Single-Phase Grid-Connected Inverters With LLCL Filters,” IEEE J Emerg Sel Top Power Electron, vol. 4, no. 2, pp. 459–467, Jun. 2016. https://doi.org/10.1109/JESTPE.2015.2464699

J. Xu, S. Xie, B. Zhang, and Q. Qian, “Robust Grid Current Control with Impedance-Phase Shaping for LCL-Filtered Inverters in Weak and Distorted Grid,” IEEE Trans Power Electron, vol. 33, no. 12, pp. 10240–10250, Dec. 2018. https://doi.org/10.1109/TPEL.2018.2808604

A. Kusmantoro and I. Farikhah, “Power management on DC microgrid with new DC coupling based on fuzzy logic,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 2, pp. 620–631, Nov. 2023. https://doi.org/10.11591/ijeecs.v32.i2.pp620-631

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License