Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 10, No. 1, February 2025
  4. Articles

Issue

Vol. 10, No. 1, February 2025

Issue Published : Feb 1, 2025
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Classification of Sleep Disorders using Support Vector Machine

https://doi.org/10.22219/kinetik.v10i1.2054
Nenden Nuraeni
UIN Maulana Malik Ibrahim Malang
Muhammad Faisal
UIN Maulana Malik Ibrahim Malang

Corresponding Author(s) : Nenden Nuraeni

nurn26122002@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 10, No. 1, February 2025
Article Published : Feb 1, 2025

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Sleep disorders become a severe concern in our busy modern lifestyles, which are often overlooked and can cause significant negative impacts on an individual's health and quality of life. This research explores the implementation of machine learning, specifically Support Vector Machine, to facilitate quick and accurate sleep disorder diagnosis. Data shows that sleep deprivation or disturbed sleep is becoming common in society, with 62% of the adult population experiencing dissatisfaction with their sleep quality. This has a significant economic impact and affects the health and productivity sectors. This study uses Kaggle Sleep Health and Lifestyle dataset of 400 data samples, applying Support Vector Machine to classify sleep disorders using three testing scenarios. The results showed an accuracy rate of 92%, confirming that Support Vector Machine can potentially improve the diagnosis of sleep disorders, enabling early intervention and better treatment for patients. Thus, this research contributes to understanding and treating sleep disorders, improving people's overall quality of life.

Keywords

Sleep Disorder Insomnia Sleep Disorder Classification Sleep Apnea Support Vector Machine
Nuraeni, N., & Faisal, M. (2025). Classification of Sleep Disorders using Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 10(1). https://doi.org/10.22219/kinetik.v10i1.2054
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Y. Li, J.-C. Guo, and X. Wang, “Comparison of sleep timing of people with different chronotypes affected by modern lifestyle,” Chinese Physics B, vol. 32, no. 6, p. 068702, Jun. 2023. https://doi.org/10.1088/1674-1056/acbf1f
  2. T. Åkerstedt, “Occupational impact,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 419–421. https://doi.org/10.1016/B978-0-12-822963-7.00381-9
  3. R. M. Piryani, S. Piryani, and M. J. Sijapati, “Awareness of community about sound sleep, sleep disorders and its implications: a step towards sleep health,” Nepalese Respiratory Journal, vol. 1, no. 1, pp. 43–44, May 2022. https://doi.org/10.3126/nrj.v1i1.45304
  4. D. Erlacher and A. Vorster, “Sleep and muscle recovery – Current concepts and empirical evidence,” Current Issues in Sport Science (CISS), vol. 8, no. 2, p. 058, Feb. 2023. https://doi.org/10.36950/2023.2ciss058
  5. M. A. Khan and H. Al-Jahdali, “The consequences of sleep deprivation on cognitive performance,” Neurosciences, vol. 28, no. 2, pp. 91–99, Apr. 2023. https://doi.org/10.17712/nsj.2023.2.20220108
  6. C. Poon and K. A. Hardin, “Short-term countermeasures for sleep loss effects,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 465–472. https://doi.org/10.1016/B978-0-12-822963-7.00271-1
  7. E. M. Rogers, N. F. Banks, and N. D. M. Jenkins, “The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review,” Diabetes Metab Res Rev, vol. 40, no. 2, Feb. 2024. https://doi.org/10.1002/dmrr.3667
  8. H. I. Zeliger, “Sleep deprivation,” in Oxidative Stress, Elsevier, 2023, pp. 137–141. https://doi.org/10.1016/B978-0-323-91890-9.00023-4
  9. S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, H. Madhani, N. Rajput, and D. Swain, “A Deep Learning Approach to Automated Sleep Stages Classification Using Multi-Modal Signals,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 867–876. https://doi.org/10.1016/j.procs.2023.01.067
  10. S. Thanaviratananich, “The economic impact of sleep deprivation,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 458–465. https://doi.org/10.1016/B978-0-12-822963-7.00069-4
  11. J. A. Rowley, “Diagnostic algorithm for sleep-related breathing disorders,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 367–373. https://doi.org/10.1016/B978-0-12-822963-7.00155-9
  12. S. E. Higgins, “Diagnostic tests in sleep medicine,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 21–30. https://doi.org/10.1093/med/9780192848253.003.0003
  13. H. Selsick and D. O’Regan, “Clinical aspects of insomnia,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 31–44. https://doi.org/10.1093/med/9780192848253.003.0004
  14. M. Reyhand Fatturrahman, A. Kurniasih, P. J. Studi Ilmu Komputer Sekolah Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ TB Simatupang, C. Timur, K. Ps Minggu, and K. Jakarta Selatan, “Penggunaan Metode NearMiss, SMOTE, dan Naïve Bayes untuk Klasifikasi Gangguan Tidur Berdasarkan Kualitas Tidur dan Gaya Hidup,” 2023.
  15. I. A. Prabowo, D. Remawati, and A. P. W. Wardana, “Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020. https://doi.org/10.30646/tikomsin.v8i2.519
  16. S. Khoramipour, M. Gandomkar, and M. Shakiba, “Enhancement of brain tumor classification from MRI images using multi-path convolutional neural network with SVM classifier,” Biomed Signal Process Control, vol. 93, p. 106117, Jul. 2024. https://doi.org/10.1016/j.bspc.2024.106117
  17. S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, and H. Madhani, “Development of Efficient Ensemble Model based on Stacking Learning for Automated Sleep Staging,” in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Nov. 2022, pp. 511–518. https://doi.org/10.1109/3ICT56508.2022.9990772
  18. D. Chopra and R. Khurana, “Support Vector Machine,” in Introduction to Machine Learning with Python, BENTHAM SCIENCE PUBLISHERS, 2023, pp. 58–73. https://doi.org/10.2174/9789815124422123010006
  19. D. Virmani and H. Pandey, “Comparative Analysis on Effect of Different SVM Kernel Functions for Classification,” 2023, pp. 657–670. https://doi.org/10.1007/978-981-19-3679-1_56
  20. S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024.
  21. L. Jia, B. Gaüzère, and P. Honeine, “Graph kernels based on linear patterns: Theoretical and experimental comparisons,” Expert Syst Appl, vol. 189, p. 116095, Mar. 2022. https://doi.org/10.1016/j.eswa.2021.116095
  22. H. Zhou, Y. Chen, and Z. C. Lipton, “Model Evaluation in Medical Datasets Over Time,” Nov. 2022. https://doi.org/10.48550/arXiv.2211.07165
  23. T. Westny, E. Frisk, and B. Olofsson, “Vehicle Behavior Prediction and Generalization Using Imbalanced Learning Techniques,” Sep. 2021. https://doi.org/10.48550/arXiv.2109.10656
  24. J. El Fiorenza Caroline, P. Parmar, S. Tiwari, A. Dixit, and A. Gupta, “Accuracy Prediction Using Analysis Methods and F-Measures,” J Phys Conf Ser, vol. 1362, no. 1, p. 012040, Nov. 2019. https://doi.org/10.1088/1742-6596/1362/1/012040
  25. E. J. Michaud, Z. Liu, and M. Tegmark, “Precision Machine Learning,” Entropy, vol. 25, no. 1, p. 175, Jan. 2023. https://doi.org/10.3390/e25010175
  26. R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9
Read More

References


Y. Li, J.-C. Guo, and X. Wang, “Comparison of sleep timing of people with different chronotypes affected by modern lifestyle,” Chinese Physics B, vol. 32, no. 6, p. 068702, Jun. 2023. https://doi.org/10.1088/1674-1056/acbf1f

T. Åkerstedt, “Occupational impact,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 419–421. https://doi.org/10.1016/B978-0-12-822963-7.00381-9

R. M. Piryani, S. Piryani, and M. J. Sijapati, “Awareness of community about sound sleep, sleep disorders and its implications: a step towards sleep health,” Nepalese Respiratory Journal, vol. 1, no. 1, pp. 43–44, May 2022. https://doi.org/10.3126/nrj.v1i1.45304

D. Erlacher and A. Vorster, “Sleep and muscle recovery – Current concepts and empirical evidence,” Current Issues in Sport Science (CISS), vol. 8, no. 2, p. 058, Feb. 2023. https://doi.org/10.36950/2023.2ciss058

M. A. Khan and H. Al-Jahdali, “The consequences of sleep deprivation on cognitive performance,” Neurosciences, vol. 28, no. 2, pp. 91–99, Apr. 2023. https://doi.org/10.17712/nsj.2023.2.20220108

C. Poon and K. A. Hardin, “Short-term countermeasures for sleep loss effects,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 465–472. https://doi.org/10.1016/B978-0-12-822963-7.00271-1

E. M. Rogers, N. F. Banks, and N. D. M. Jenkins, “The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review,” Diabetes Metab Res Rev, vol. 40, no. 2, Feb. 2024. https://doi.org/10.1002/dmrr.3667

H. I. Zeliger, “Sleep deprivation,” in Oxidative Stress, Elsevier, 2023, pp. 137–141. https://doi.org/10.1016/B978-0-323-91890-9.00023-4

S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, H. Madhani, N. Rajput, and D. Swain, “A Deep Learning Approach to Automated Sleep Stages Classification Using Multi-Modal Signals,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 867–876. https://doi.org/10.1016/j.procs.2023.01.067

S. Thanaviratananich, “The economic impact of sleep deprivation,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 458–465. https://doi.org/10.1016/B978-0-12-822963-7.00069-4

J. A. Rowley, “Diagnostic algorithm for sleep-related breathing disorders,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 367–373. https://doi.org/10.1016/B978-0-12-822963-7.00155-9

S. E. Higgins, “Diagnostic tests in sleep medicine,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 21–30. https://doi.org/10.1093/med/9780192848253.003.0003

H. Selsick and D. O’Regan, “Clinical aspects of insomnia,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 31–44. https://doi.org/10.1093/med/9780192848253.003.0004

M. Reyhand Fatturrahman, A. Kurniasih, P. J. Studi Ilmu Komputer Sekolah Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ TB Simatupang, C. Timur, K. Ps Minggu, and K. Jakarta Selatan, “Penggunaan Metode NearMiss, SMOTE, dan Naïve Bayes untuk Klasifikasi Gangguan Tidur Berdasarkan Kualitas Tidur dan Gaya Hidup,” 2023.

I. A. Prabowo, D. Remawati, and A. P. W. Wardana, “Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020. https://doi.org/10.30646/tikomsin.v8i2.519

S. Khoramipour, M. Gandomkar, and M. Shakiba, “Enhancement of brain tumor classification from MRI images using multi-path convolutional neural network with SVM classifier,” Biomed Signal Process Control, vol. 93, p. 106117, Jul. 2024. https://doi.org/10.1016/j.bspc.2024.106117

S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, and H. Madhani, “Development of Efficient Ensemble Model based on Stacking Learning for Automated Sleep Staging,” in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Nov. 2022, pp. 511–518. https://doi.org/10.1109/3ICT56508.2022.9990772

D. Chopra and R. Khurana, “Support Vector Machine,” in Introduction to Machine Learning with Python, BENTHAM SCIENCE PUBLISHERS, 2023, pp. 58–73. https://doi.org/10.2174/9789815124422123010006

D. Virmani and H. Pandey, “Comparative Analysis on Effect of Different SVM Kernel Functions for Classification,” 2023, pp. 657–670. https://doi.org/10.1007/978-981-19-3679-1_56

S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024.

L. Jia, B. Gaüzère, and P. Honeine, “Graph kernels based on linear patterns: Theoretical and experimental comparisons,” Expert Syst Appl, vol. 189, p. 116095, Mar. 2022. https://doi.org/10.1016/j.eswa.2021.116095

H. Zhou, Y. Chen, and Z. C. Lipton, “Model Evaluation in Medical Datasets Over Time,” Nov. 2022. https://doi.org/10.48550/arXiv.2211.07165

T. Westny, E. Frisk, and B. Olofsson, “Vehicle Behavior Prediction and Generalization Using Imbalanced Learning Techniques,” Sep. 2021. https://doi.org/10.48550/arXiv.2109.10656

J. El Fiorenza Caroline, P. Parmar, S. Tiwari, A. Dixit, and A. Gupta, “Accuracy Prediction Using Analysis Methods and F-Measures,” J Phys Conf Ser, vol. 1362, no. 1, p. 012040, Nov. 2019. https://doi.org/10.1088/1742-6596/1362/1/012040

E. J. Michaud, Z. Liu, and M. Tegmark, “Precision Machine Learning,” Entropy, vol. 25, no. 1, p. 175, Jan. 2023. https://doi.org/10.3390/e25010175

R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License