This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Classification of Sleep Disorders using Support Vector Machine
Corresponding Author(s) : Nenden Nuraeni
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 10, No. 1, February 2025
Abstract
Sleep disorders become a severe concern in our busy modern lifestyles, which are often overlooked and can cause significant negative impacts on an individual's health and quality of life. This research explores the implementation of machine learning, specifically Support Vector Machine, to facilitate quick and accurate sleep disorder diagnosis. Data shows that sleep deprivation or disturbed sleep is becoming common in society, with 62% of the adult population experiencing dissatisfaction with their sleep quality. This has a significant economic impact and affects the health and productivity sectors. This study uses Kaggle Sleep Health and Lifestyle dataset of 400 data samples, applying Support Vector Machine to classify sleep disorders using three testing scenarios. The results showed an accuracy rate of 92%, confirming that Support Vector Machine can potentially improve the diagnosis of sleep disorders, enabling early intervention and better treatment for patients. Thus, this research contributes to understanding and treating sleep disorders, improving people's overall quality of life.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, J.-C. Guo, and X. Wang, “Comparison of sleep timing of people with different chronotypes affected by modern lifestyle,” Chinese Physics B, vol. 32, no. 6, p. 068702, Jun. 2023. https://doi.org/10.1088/1674-1056/acbf1f
- T. Åkerstedt, “Occupational impact,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 419–421. https://doi.org/10.1016/B978-0-12-822963-7.00381-9
- R. M. Piryani, S. Piryani, and M. J. Sijapati, “Awareness of community about sound sleep, sleep disorders and its implications: a step towards sleep health,” Nepalese Respiratory Journal, vol. 1, no. 1, pp. 43–44, May 2022. https://doi.org/10.3126/nrj.v1i1.45304
- D. Erlacher and A. Vorster, “Sleep and muscle recovery – Current concepts and empirical evidence,” Current Issues in Sport Science (CISS), vol. 8, no. 2, p. 058, Feb. 2023. https://doi.org/10.36950/2023.2ciss058
- M. A. Khan and H. Al-Jahdali, “The consequences of sleep deprivation on cognitive performance,” Neurosciences, vol. 28, no. 2, pp. 91–99, Apr. 2023. https://doi.org/10.17712/nsj.2023.2.20220108
- C. Poon and K. A. Hardin, “Short-term countermeasures for sleep loss effects,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 465–472. https://doi.org/10.1016/B978-0-12-822963-7.00271-1
- E. M. Rogers, N. F. Banks, and N. D. M. Jenkins, “The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review,” Diabetes Metab Res Rev, vol. 40, no. 2, Feb. 2024. https://doi.org/10.1002/dmrr.3667
- H. I. Zeliger, “Sleep deprivation,” in Oxidative Stress, Elsevier, 2023, pp. 137–141. https://doi.org/10.1016/B978-0-323-91890-9.00023-4
- S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, H. Madhani, N. Rajput, and D. Swain, “A Deep Learning Approach to Automated Sleep Stages Classification Using Multi-Modal Signals,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 867–876. https://doi.org/10.1016/j.procs.2023.01.067
- S. Thanaviratananich, “The economic impact of sleep deprivation,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 458–465. https://doi.org/10.1016/B978-0-12-822963-7.00069-4
- J. A. Rowley, “Diagnostic algorithm for sleep-related breathing disorders,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 367–373. https://doi.org/10.1016/B978-0-12-822963-7.00155-9
- S. E. Higgins, “Diagnostic tests in sleep medicine,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 21–30. https://doi.org/10.1093/med/9780192848253.003.0003
- H. Selsick and D. O’Regan, “Clinical aspects of insomnia,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 31–44. https://doi.org/10.1093/med/9780192848253.003.0004
- M. Reyhand Fatturrahman, A. Kurniasih, P. J. Studi Ilmu Komputer Sekolah Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ TB Simatupang, C. Timur, K. Ps Minggu, and K. Jakarta Selatan, “Penggunaan Metode NearMiss, SMOTE, dan Naïve Bayes untuk Klasifikasi Gangguan Tidur Berdasarkan Kualitas Tidur dan Gaya Hidup,” 2023.
- I. A. Prabowo, D. Remawati, and A. P. W. Wardana, “Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020. https://doi.org/10.30646/tikomsin.v8i2.519
- S. Khoramipour, M. Gandomkar, and M. Shakiba, “Enhancement of brain tumor classification from MRI images using multi-path convolutional neural network with SVM classifier,” Biomed Signal Process Control, vol. 93, p. 106117, Jul. 2024. https://doi.org/10.1016/j.bspc.2024.106117
- S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, and H. Madhani, “Development of Efficient Ensemble Model based on Stacking Learning for Automated Sleep Staging,” in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Nov. 2022, pp. 511–518. https://doi.org/10.1109/3ICT56508.2022.9990772
- D. Chopra and R. Khurana, “Support Vector Machine,” in Introduction to Machine Learning with Python, BENTHAM SCIENCE PUBLISHERS, 2023, pp. 58–73. https://doi.org/10.2174/9789815124422123010006
- D. Virmani and H. Pandey, “Comparative Analysis on Effect of Different SVM Kernel Functions for Classification,” 2023, pp. 657–670. https://doi.org/10.1007/978-981-19-3679-1_56
- S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024.
- L. Jia, B. Gaüzère, and P. Honeine, “Graph kernels based on linear patterns: Theoretical and experimental comparisons,” Expert Syst Appl, vol. 189, p. 116095, Mar. 2022. https://doi.org/10.1016/j.eswa.2021.116095
- H. Zhou, Y. Chen, and Z. C. Lipton, “Model Evaluation in Medical Datasets Over Time,” Nov. 2022. https://doi.org/10.48550/arXiv.2211.07165
- T. Westny, E. Frisk, and B. Olofsson, “Vehicle Behavior Prediction and Generalization Using Imbalanced Learning Techniques,” Sep. 2021. https://doi.org/10.48550/arXiv.2109.10656
- J. El Fiorenza Caroline, P. Parmar, S. Tiwari, A. Dixit, and A. Gupta, “Accuracy Prediction Using Analysis Methods and F-Measures,” J Phys Conf Ser, vol. 1362, no. 1, p. 012040, Nov. 2019. https://doi.org/10.1088/1742-6596/1362/1/012040
- E. J. Michaud, Z. Liu, and M. Tegmark, “Precision Machine Learning,” Entropy, vol. 25, no. 1, p. 175, Jan. 2023. https://doi.org/10.3390/e25010175
- R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9
References
Y. Li, J.-C. Guo, and X. Wang, “Comparison of sleep timing of people with different chronotypes affected by modern lifestyle,” Chinese Physics B, vol. 32, no. 6, p. 068702, Jun. 2023. https://doi.org/10.1088/1674-1056/acbf1f
T. Åkerstedt, “Occupational impact,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 419–421. https://doi.org/10.1016/B978-0-12-822963-7.00381-9
R. M. Piryani, S. Piryani, and M. J. Sijapati, “Awareness of community about sound sleep, sleep disorders and its implications: a step towards sleep health,” Nepalese Respiratory Journal, vol. 1, no. 1, pp. 43–44, May 2022. https://doi.org/10.3126/nrj.v1i1.45304
D. Erlacher and A. Vorster, “Sleep and muscle recovery – Current concepts and empirical evidence,” Current Issues in Sport Science (CISS), vol. 8, no. 2, p. 058, Feb. 2023. https://doi.org/10.36950/2023.2ciss058
M. A. Khan and H. Al-Jahdali, “The consequences of sleep deprivation on cognitive performance,” Neurosciences, vol. 28, no. 2, pp. 91–99, Apr. 2023. https://doi.org/10.17712/nsj.2023.2.20220108
C. Poon and K. A. Hardin, “Short-term countermeasures for sleep loss effects,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 465–472. https://doi.org/10.1016/B978-0-12-822963-7.00271-1
E. M. Rogers, N. F. Banks, and N. D. M. Jenkins, “The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review,” Diabetes Metab Res Rev, vol. 40, no. 2, Feb. 2024. https://doi.org/10.1002/dmrr.3667
H. I. Zeliger, “Sleep deprivation,” in Oxidative Stress, Elsevier, 2023, pp. 137–141. https://doi.org/10.1016/B978-0-323-91890-9.00023-4
S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, H. Madhani, N. Rajput, and D. Swain, “A Deep Learning Approach to Automated Sleep Stages Classification Using Multi-Modal Signals,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 867–876. https://doi.org/10.1016/j.procs.2023.01.067
S. Thanaviratananich, “The economic impact of sleep deprivation,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 458–465. https://doi.org/10.1016/B978-0-12-822963-7.00069-4
J. A. Rowley, “Diagnostic algorithm for sleep-related breathing disorders,” in Encyclopedia of Sleep and Circadian Rhythms, Elsevier, 2023, pp. 367–373. https://doi.org/10.1016/B978-0-12-822963-7.00155-9
S. E. Higgins, “Diagnostic tests in sleep medicine,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 21–30. https://doi.org/10.1093/med/9780192848253.003.0003
H. Selsick and D. O’Regan, “Clinical aspects of insomnia,” in Oxford Handbook of Sleep Medicine, Oxford University Press, 2022, pp. 31–44. https://doi.org/10.1093/med/9780192848253.003.0004
M. Reyhand Fatturrahman, A. Kurniasih, P. J. Studi Ilmu Komputer Sekolah Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ TB Simatupang, C. Timur, K. Ps Minggu, and K. Jakarta Selatan, “Penggunaan Metode NearMiss, SMOTE, dan Naïve Bayes untuk Klasifikasi Gangguan Tidur Berdasarkan Kualitas Tidur dan Gaya Hidup,” 2023.
I. A. Prabowo, D. Remawati, and A. P. W. Wardana, “Klasifikasi Tingkat Gangguan Tidur Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020. https://doi.org/10.30646/tikomsin.v8i2.519
S. Khoramipour, M. Gandomkar, and M. Shakiba, “Enhancement of brain tumor classification from MRI images using multi-path convolutional neural network with SVM classifier,” Biomed Signal Process Control, vol. 93, p. 106117, Jul. 2024. https://doi.org/10.1016/j.bspc.2024.106117
S. K. Satapathy, H. K. Kondaveeti, S. R. Sreeja, and H. Madhani, “Development of Efficient Ensemble Model based on Stacking Learning for Automated Sleep Staging,” in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Nov. 2022, pp. 511–518. https://doi.org/10.1109/3ICT56508.2022.9990772
D. Chopra and R. Khurana, “Support Vector Machine,” in Introduction to Machine Learning with Python, BENTHAM SCIENCE PUBLISHERS, 2023, pp. 58–73. https://doi.org/10.2174/9789815124422123010006
D. Virmani and H. Pandey, “Comparative Analysis on Effect of Different SVM Kernel Functions for Classification,” 2023, pp. 657–670. https://doi.org/10.1007/978-981-19-3679-1_56
S. Rahayu and Y. Yamasari, “Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM),” Journal of Informatics and Computer Science, vol. 05, 2024.
L. Jia, B. Gaüzère, and P. Honeine, “Graph kernels based on linear patterns: Theoretical and experimental comparisons,” Expert Syst Appl, vol. 189, p. 116095, Mar. 2022. https://doi.org/10.1016/j.eswa.2021.116095
H. Zhou, Y. Chen, and Z. C. Lipton, “Model Evaluation in Medical Datasets Over Time,” Nov. 2022. https://doi.org/10.48550/arXiv.2211.07165
T. Westny, E. Frisk, and B. Olofsson, “Vehicle Behavior Prediction and Generalization Using Imbalanced Learning Techniques,” Sep. 2021. https://doi.org/10.48550/arXiv.2109.10656
J. El Fiorenza Caroline, P. Parmar, S. Tiwari, A. Dixit, and A. Gupta, “Accuracy Prediction Using Analysis Methods and F-Measures,” J Phys Conf Ser, vol. 1362, no. 1, p. 012040, Nov. 2019. https://doi.org/10.1088/1742-6596/1362/1/012040
E. J. Michaud, Z. Liu, and M. Tegmark, “Precision Machine Learning,” Entropy, vol. 25, no. 1, p. 175, Jan. 2023. https://doi.org/10.3390/e25010175
R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Stroudsburg, PA, USA: Association for Computational Linguistics, 2020, pp. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9