Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 4, November 2024
  4. Articles

Issue

Vol. 9, No. 4, November 2024

Issue Published : Nov 1, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Improving Software Defect Prediction Using a Combination of Ant Colony Optimization-based Feature Selection and Ensemble Technique

https://doi.org/10.22219/kinetik.v9i4.2038
Windi Eka Yulia Retnani
Universitas Jember
Muhammad 'Ariful Furqon
Universitas Jember
Juni Setiawan
Universitas Jember

Corresponding Author(s) : Windi Eka Yulia Retnani

windi.ilkom@unej.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 4, November 2024
Article Published : Nov 1, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Software defect prediction plays a vital role in enhancing software quality and minimizing maintenance costs. This study aims to improve software defect prediction by employing a combination of Ant Colony Optimization (ACO) for feature selection and ensemble techniques, particularly Gradient Boosting. This research utilized three NASA MDP datasets: MC1, KC1, and PC2, to evaluate the performance of four machine learning algorithms: Random Forest, Support Vector Machine (SVM), Decision Tree, and Naïve Bayes. The data preprocessing comprised handling class imbalance using SMOTE and converting categorical data into numerical representations. The results indicate that the integration of ACO and Gradient Boosting significantly enhances the accuracy of all four algorithms. Notably, the Random Forest algorithm achieved the highest accuracy of 99% on the MC1 dataset. The findings suggest that combining ACO-based feature selection with ensemble techniques can effectively boost the performance of software defect prediction models, offering a robust approach for early detection of potential software defects and contributing to improved software reliability and efficiency.

Keywords

Software Defect Ant Colony Optimization SMOTE Ensemble
Retnani, W. E. Y., Furqon, M. ’Ariful ., & Setiawan, J. (2024). Improving Software Defect Prediction Using a Combination of Ant Colony Optimization-based Feature Selection and Ensemble Technique. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(4). https://doi.org/10.22219/kinetik.v9i4.2038
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 117–126, Nov. 2021. https://doi.org/10.34128/jsi.v7i2.313
  2. Y. Liu, W. Zhang, G. Qin, and J. Zhao, “A comparative study on the effect of data imbalance on software defect prediction,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 1603–1616. https://doi.org/10.1016/j.procs.2022.11.349
  3. N. Grattan, D. Alencar da Costa, and N. Stanger, “The need for more informative defect prediction: A systematic literature review,” Jul. 01, 2024, Elsevier B.V. https://doi.org/10.1016/j.infsof.2024.107456
  4. A. Saifudin, D. Romi, and S. Wahono, “Pendekatan Level Data untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software,” Journal of Software Engineering, vol. 1, no. 2, 2015.
  5. A. Hardoni, D. P. Rini, and S. Sukemi, “Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization untuk Prediksi Cacat Perangkat Lunak,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 233, Jan. 2021. http://dx.doi.org/10.30865/mib.v5i1.2616
  6. V. Chauhan, C. Arora, H. Khalajzadeh, and J. Grundy, “How do software practitioners perceive human-centric defects?,” Inf Softw Technol, vol. 176, Dec. 2024. https://doi.org/10.1016/j.infsof.2024.107549
  7. A. Briciu, G. Czibula, and M. Lupea, “A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers,” Procedia Comput Sci, vol. 225, pp. 1601–1610, 2023. https://doi.org/10.1016/j.procs.2023.10.149
  8. A. S. Dyer et al., “Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks,” Marine Structures, vol. 83, May 2022. https://doi.org/10.1016/j.marstruc.2021.103152
  9. X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, “Ensemble learning based software defect prediction,” Journal of Engineering Research, Nov. 2023. https://doi.org/10.1016/j.jer.2023.10.038
  10. A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software Defect Prediction Analysis Using Machine Learning Techniques,” Sustainability, vol. 15, no. 6, p. 5517, Mar. 2023. https://doi.org/10.3390/su15065517
  11. Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda, and A. A. Abd El-Aziz, “Reliable prediction of software defects using Shapley interpretable machine learning models,” Egyptian Informatics Journal, vol. 24, no. 3, Sep. 2023. https://doi.org/10.1016/j.eij.2023.05.011
  12. S. Manakkadu and S. Dutta, “Ant Colony Optimization based Support Vector Machine for Improved Classification of Unbalanced Datasets,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 586–593. https://doi.org/10.1016/j.procs.2024.05.143
  13. G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” 2021.
  14. A. John, I. F. Bin Isnin, S. H. H. Madni, and F. B. Muchtar, “Enhanced intrusion detection model based on principal component analysis and variable ensemble machine learning algorithm,” Intelligent Systems with Applications, vol. 24, Dec. 2024. https://doi.org/10.1016/j.iswa.2024.200442
  15. M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724
  16. I. Muslim Karo Karo and Hendryana, “Klasifikasi Penderita Diabetes Menggunakan Algoritma Machine Learning dan Z-Score,” Jurnal Teknologi Terpadu , vol. 8 nomor 2, 2022.
  17. H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 578, Dec. 2021. https://dx.doi.org/10.32493/informatika.v5i4.7575
  18. M. N. Ahmad, Z. Shao, X. Xiao, P. Fu, A. Javed, and I. Ara, “A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data,” International Journal of Applied Earth Observation and Geoinformation, vol. 132, Aug. 2024. https://doi.org/10.1016/j.jag.2024.104013
  19. S. Stradowski and L. Madeyski, “Industrial applications of software defect prediction using machine learning: A business-driven systematic literature review,” Jul. 01, 2023, Elsevier B.V. https://doi.org/10.1016/j.infsof.2023.107192
  20. I. Mehmood et al., “A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning,” IEEE Access, vol. 11, pp. 63579–63597, 2023. https://doi.org/10.1109/ACCESS.2023.3287326
  21. Y. Chachoui, N. Azizi, R. Hotte, and T. Bensebaa, “Enhancing algorithmic assessment in education: Equi-fused-data-based SMOTE for balanced learning,” Computers and Education: Artificial Intelligence, vol. 6, Jun. 2024. https://doi.org/10.1016/j.caeai.2024.100222
  22. K. Khadijah and P. S. Sasongko, “The Comparison of Imbalanced Data Handling Method in Software Defect Prediction,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 203–210, Aug. 2020. https://doi.org/10.22219/kinetik.v5i3.1049
  23. W. Wu, K. Chen, and E. Tsotsas, “Prediction of rod-like particle mixing in rotary drums by three machine learning methods based on DEM simulation data,” Powder Technol, vol. 448, p. 120307, Dec. 2024. https://doi.org/10.1016/j.powtec.2024.120307
  24. M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021. http://dx.doi.org/10.30865/mib.v5i2.2937
  25. L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.
  26. P. R. Sihombing and I. F. Yuliati, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 417–426, May 2021. https://doi.org/10.30812/matrik.v20i2.1174
Read More

References


N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,” Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 117–126, Nov. 2021. https://doi.org/10.34128/jsi.v7i2.313

Y. Liu, W. Zhang, G. Qin, and J. Zhao, “A comparative study on the effect of data imbalance on software defect prediction,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 1603–1616. https://doi.org/10.1016/j.procs.2022.11.349

N. Grattan, D. Alencar da Costa, and N. Stanger, “The need for more informative defect prediction: A systematic literature review,” Jul. 01, 2024, Elsevier B.V. https://doi.org/10.1016/j.infsof.2024.107456

A. Saifudin, D. Romi, and S. Wahono, “Pendekatan Level Data untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software,” Journal of Software Engineering, vol. 1, no. 2, 2015.

A. Hardoni, D. P. Rini, and S. Sukemi, “Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization untuk Prediksi Cacat Perangkat Lunak,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 233, Jan. 2021. http://dx.doi.org/10.30865/mib.v5i1.2616

V. Chauhan, C. Arora, H. Khalajzadeh, and J. Grundy, “How do software practitioners perceive human-centric defects?,” Inf Softw Technol, vol. 176, Dec. 2024. https://doi.org/10.1016/j.infsof.2024.107549

A. Briciu, G. Czibula, and M. Lupea, “A study on the relevance of semantic features extracted using BERT-based language models for enhancing the performance of software defect classifiers,” Procedia Comput Sci, vol. 225, pp. 1601–1610, 2023. https://doi.org/10.1016/j.procs.2023.10.149

A. S. Dyer et al., “Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks,” Marine Structures, vol. 83, May 2022. https://doi.org/10.1016/j.marstruc.2021.103152

X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, “Ensemble learning based software defect prediction,” Journal of Engineering Research, Nov. 2023. https://doi.org/10.1016/j.jer.2023.10.038

A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software Defect Prediction Analysis Using Machine Learning Techniques,” Sustainability, vol. 15, no. 6, p. 5517, Mar. 2023. https://doi.org/10.3390/su15065517

Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda, and A. A. Abd El-Aziz, “Reliable prediction of software defects using Shapley interpretable machine learning models,” Egyptian Informatics Journal, vol. 24, no. 3, Sep. 2023. https://doi.org/10.1016/j.eij.2023.05.011

S. Manakkadu and S. Dutta, “Ant Colony Optimization based Support Vector Machine for Improved Classification of Unbalanced Datasets,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 586–593. https://doi.org/10.1016/j.procs.2024.05.143

G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” 2021.

A. John, I. F. Bin Isnin, S. H. H. Madni, and F. B. Muchtar, “Enhanced intrusion detection model based on principal component analysis and variable ensemble machine learning algorithm,” Intelligent Systems with Applications, vol. 24, Dec. 2024. https://doi.org/10.1016/j.iswa.2024.200442

M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724

I. Muslim Karo Karo and Hendryana, “Klasifikasi Penderita Diabetes Menggunakan Algoritma Machine Learning dan Z-Score,” Jurnal Teknologi Terpadu , vol. 8 nomor 2, 2022.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 578, Dec. 2021. https://dx.doi.org/10.32493/informatika.v5i4.7575

M. N. Ahmad, Z. Shao, X. Xiao, P. Fu, A. Javed, and I. Ara, “A novel ensemble learning approach to extract urban impervious surface based on machine learning algorithms using SAR and optical data,” International Journal of Applied Earth Observation and Geoinformation, vol. 132, Aug. 2024. https://doi.org/10.1016/j.jag.2024.104013

S. Stradowski and L. Madeyski, “Industrial applications of software defect prediction using machine learning: A business-driven systematic literature review,” Jul. 01, 2023, Elsevier B.V. https://doi.org/10.1016/j.infsof.2023.107192

I. Mehmood et al., “A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning,” IEEE Access, vol. 11, pp. 63579–63597, 2023. https://doi.org/10.1109/ACCESS.2023.3287326

Y. Chachoui, N. Azizi, R. Hotte, and T. Bensebaa, “Enhancing algorithmic assessment in education: Equi-fused-data-based SMOTE for balanced learning,” Computers and Education: Artificial Intelligence, vol. 6, Jun. 2024. https://doi.org/10.1016/j.caeai.2024.100222

K. Khadijah and P. S. Sasongko, “The Comparison of Imbalanced Data Handling Method in Software Defect Prediction,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 203–210, Aug. 2020. https://doi.org/10.22219/kinetik.v5i3.1049

W. Wu, K. Chen, and E. Tsotsas, “Prediction of rod-like particle mixing in rotary drums by three machine learning methods based on DEM simulation data,” Powder Technol, vol. 448, p. 120307, Dec. 2024. https://doi.org/10.1016/j.powtec.2024.120307

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021. http://dx.doi.org/10.30865/mib.v5i2.2937

L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.

P. R. Sihombing and I. F. Yuliati, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 417–426, May 2021. https://doi.org/10.30812/matrik.v20i2.1174

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License