Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 4, November 2024
  4. Articles

Issue

Vol. 9, No. 4, November 2024

Issue Published : Nov 1, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Advancements in Cooperative Mobile Robots Control Strategies for Large-Scale Material Transport: Review

https://doi.org/10.22219/kinetik.v9i4.1992
Hendi Wicaksono Agung
Universitas Surabaya
https://orcid.org/0000-0001-8324-7911

Corresponding Author(s) : Hendi Wicaksono Agung

hendi@staff.ubaya.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 4, November 2024
Article Published : Nov 1, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This paper explores groundbreaking advancements in control strategies for cooperative mobile robots used in large-scale material transport, a critical aspect of modern industrial, manufacturing, logistics, and construction sectors. It delves into the development of sophisticated systems that enable seamless coordination among multiple mobile robot systems. The research presents a novel hierarchical finite state automaton for dynamic mission adaptation and a null space-based control scheme for precise task execution and enhanced system resilience. The introduction of Mecanum wheels facilitates flexible movement and manipulation of materials, thereby increasing the operational efficiency and safety. Cutting-edge sensory technology, including LiDAR (Light Detection and Ranging), and the implementation of Robot Operating System are highlighted for their roles in enhancing autonomous navigation and intelligent operation. Additionally, the paper discusses the impact of centralized and decentralized control methods in ensuring safe cooperative object transport. The findings contribute to the vision of Industry 4.0 by promoting the integration of automation and robotic cooperation in complex environments and present a foundational blueprint for further research. Challenges for future work such as scalability, communication efficiency, collision avoidance, and energy efficiency are also considered, underscoring the need for ongoing development of robust and scalable robotic systems to address modern transport challenges.

Keywords

Cooperative Mobile Robots Multiple Mobile Robots Large-scale Material Transport On Top Carried Object Transported Autonomous Navigation
Agung, H. W. (2024). Advancements in Cooperative Mobile Robots Control Strategies for Large-Scale Material Transport: Review. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(4). https://doi.org/10.22219/kinetik.v9i4.1992
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. K. Okuhata, S. Ino, Y. Mizobuchi, G. Yang, S. Wang, and H. Okamura, “Development of Autonomous Material Transportation Robots: Mechanical Design and Safety Measurements,” in 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Mar. 2021, pp. 125–126. https://doi.org/10.1109/ISR50024.2021.9419531
  2. M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Substantial capabilities of robotics in enhancing industry 4.0 implementation,” Cogn. Robot., vol. 1, no. May, pp. 58–75, 2021. https://doi.org/10.1016/j.cogr.2021.06.001
  3. D. Bechtsis, N. Tsolakis, M. Vouzas, and D. Vlachos, Industry 4.0: Sustainable material handling processes in industrial environments, vol. 40. Elsevier Masson SAS, 2017. https://doi.org/10.1016/B978-0-444-63965-3.50382-2
  4. J. Flayfel, G. Demesure, and H. B. El-Haouzi, “Contribution of the Omnidirectional Autonomous Mobile Robot to Manufacturing Systems Agility,” 2022, pp. 429–440. https://doi.org/10.1007/978-3-030-99108-1_31
  5. S. Madhankumar, P. Anandraj, A. Varadarajan, R. A. Kumar, and K. Kaleeswaran, “Design and Modelling of Autonomous Mobile Robot for Material Handling,” in 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Mar. 2021, pp. 738–742. https://doi.org/10.1109/ICACCS51430.2021.9441831
  6. J. A. Marvel, R. Bostelman, and J. Falco, “Multi-Robot Assembly Strategies and Metrics,” ACM Comput. Surv., vol. 51, no. 1, pp. 1–32, Jan. 2019. https://doi.org/10.1145/3150225
  7. C. C. Loh and A. Traechtler, “Cooperative Transportation of Aload Using Nonholonomic Mobile Robots,” Procedia Eng., vol. 41, pp. 860–866, 2012. https://doi.org/10.1016/j.proeng.2012.07.255
  8. P. Paniagua-Contro et al., “Extension of Leader-Follower Behaviours for Wheeled Mobile Robots in Multirobot Coordination,” Math. Probl. Eng., vol. 2019, pp. 1–16, Apr. 2019. https://doi.org/10.1155/2019/4957259
  9. E. Tuci, M. H. M. Alkilabi, and O. Akanyeti, “Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art,” Front. Robot. AI, vol. 5, May 2018. https://doi.org/10.3389/frobt.2018.00059
  10. H. Farivarnejad and S. Berman, “Multirobot Control Strategies for Collective Transport,” Annu. Rev. Control. Robot. Auton. Syst., vol. 5, no. 1, pp. 205–219, May 2022. https://doi.org/10.1146/annurev-control-042920-095844
  11. X. An, C. Wu, Y. Lin, M. Lin, T. Yoshinaga, and Y. Ji, “Multi-Robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges,” IEEE Open J. Comput. Soc., vol. 4, pp. 23–36, 2023. https://doi.org/10.1109/OJCS.2023.3238324
  12. M. Kassawat, E. Cervera, and A. P. del Pobil, “An Omnidirectional Platform for Education and Research in Cooperative Robotics,” Electronics, vol. 11, no. 3, p. 499, Feb. 2022. https://doi.org/10.3390/electronics11030499
  13. L. Escobar, C. Moyano, G. Aguirre, G. Guerra, L. Allauca, and D. Loza, “Multi-Robot platform with features of Cyber-physical systems for education applications,” in 2020 IEEE ANDESCON, Oct. 2020, pp. 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272030
  14. U. Dziomin, A. Kabysh, R. Stetter, and V. Golovko, “A Multi-Agent Reinforcement Learning Approach for the Efficient Control of Mobile Robots,” in Advances in Intelligent Robotics and Collaborative Automation, New York: River Publishers, 2022, pp. 123–145. https://www.doi.org/10.1201/9781003337119-6
  15. T. Jiang, S. Zhang, R. Wang, and S. Wang, “Development and Verification of an Autonomous and Controllable Mobile Robot Platform,” Mechatronics Intell. Transp. Syst., vol. 2, no. 1, Mar. 2023. https://doi.org/10.56578/mits020102
  16. J. Wu, C. Lv, L. Zhao, R. Li, and G. Wang, “Design and implementation of an omnidirectional mobile robot platform with unified I/O interfaces,” 2017 IEEE Int. Conf. Mechatronics Autom. ICMA 2017, pp. 410–415, 2017. https://doi.org/10.1109/ICMA.2017.8015852
  17. C. Fan, F. Zeng, S. Shirafuji, and J. Ota, “Development of a Three-Mobile-Robot System for Cooperative Transportation,” J. Mech. Robot., vol. 16, no. 2, Feb. 2024. https://doi.org/10.1115/1.4056771
  18. J. Hu, P. Bhowmick, and A. Lanzon, “Group Coordinated Control of Networked Mobile Robots With Applications to Object Transportation,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8269–8274, Aug. 2021. https://doi.org/10.1109/TVT.2021.3093157
  19. H. Ebel, W. Luo, F. Yu, Q. Tang, and P. Eberhard, “Design and Experimental Validation of a Distributed Cooperative Transportation Scheme,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1157–1169, Jul. 2021. https://doi.org/10.1109/TASE.2020.2997411
  20. C. Beltrán, A. Cabrera, G. Delgado, and D. Iturralde, “Centralized Trajectory Tracking Controller for a Multi-robot System,” 2020, pp. 331–345. https://doi.org/10.1007/978-3-030-42531-9_27
  21. M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning to Cooperate via an Attention-Based Communication Neural Network in Decentralized Multi-Robot Exploration,” Entropy, vol. 21, no. 3, p. 294, Mar. 2019. https://doi.org/10.3390/e21030294
  22. P. Verma, P. Dasgupta, and C. Chakraborty, “A novel hybrid centralised decentralised framework for electric vehicles coordination,” IET Smart Grid, vol. 7, no. 1, pp. 89–100, Feb. 2024. https://doi.org/10.1049/stg2.12144
  23. J.-Y. Jhang, C.-J. Lin, and K.-Y. Young, “Cooperative Carrying Control for Multi-Evolutionary Mobile Robots in Unknown Environments,” Electronics, vol. 8, no. 3, p. 298, Mar. 2019. https://doi.org/10.3390/electronics8030298
  24. G. Wang, C. Wang, Q. Du, L. Li, and W. Dong, “Distributed Cooperative Control of Multiple Nonholonomic Mobile Robots,” J. Intell. Robot. Syst., vol. 83, no. 3–4, pp. 525–541, Sep. 2016. https://doi.org/10.1007/s10846-015-0316-x
  25. A. Burghardt, P. Gierlak, and W. Skwarek, “Modeling of dynamics of cooperating wheeled mobile robots,” J. Theor. Appl. Mech., pp. 649–659, Sep. 2021. https://doi.org/10.15632/jtam-pl/141668
  26. L. Zhang, Y. Sun, A. Barth, and O. Ma, “Decentralized Control of Multi-Robot System in Cooperative Object Transportation Using Deep Reinforcement Learning,” IEEE Access, vol. 8, pp. 184109–184119, 2020. https://doi.org/10.1109/ACCESS.2020.3025287
  27. L. Dong, Y. Chen, and X. Qu, “Formation Control Strategy for Nonholonomic Intelligent Vehicles Based on Virtual Structure and Consensus Approach,” Procedia Eng., vol. 137, pp. 415–424, 2016. https://doi.org/10.1016/j.proeng.2016.01.276
  28. Y. Liu, J. Gao, C. Liu, F. Zhao, and J. Zhao, “Reconfigurable Formation Control of Multi-Agents Using Virtual Linkage Approach,” Appl. Sci., vol. 8, no. 7, p. 1109, Jul. 2018. https://doi.org/10.3390/app8071109
  29. M. R. Mohamad Sapiee and K. A. Mohd Annuar, “Synchronous Mobile Robots Formation Control,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 16, no. 3, p. 1183, Jun. 2018. http://doi.org/10.12928/telkomnika.v16i3.8397
  30. Z. Zhang and J. Huang, “Behavioral Formation Control of Multiple Mecanum-wheeled Mobile Manipulators,” in 2020 IEEE 16th International Conference on Control & Automation (ICCA), Oct. 2020, pp. 642–647. https://doi.org/10.1109/ICCA51439.2020.9264349
Read More

References


K. Okuhata, S. Ino, Y. Mizobuchi, G. Yang, S. Wang, and H. Okamura, “Development of Autonomous Material Transportation Robots: Mechanical Design and Safety Measurements,” in 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Mar. 2021, pp. 125–126. https://doi.org/10.1109/ISR50024.2021.9419531

M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Substantial capabilities of robotics in enhancing industry 4.0 implementation,” Cogn. Robot., vol. 1, no. May, pp. 58–75, 2021. https://doi.org/10.1016/j.cogr.2021.06.001

D. Bechtsis, N. Tsolakis, M. Vouzas, and D. Vlachos, Industry 4.0: Sustainable material handling processes in industrial environments, vol. 40. Elsevier Masson SAS, 2017. https://doi.org/10.1016/B978-0-444-63965-3.50382-2

J. Flayfel, G. Demesure, and H. B. El-Haouzi, “Contribution of the Omnidirectional Autonomous Mobile Robot to Manufacturing Systems Agility,” 2022, pp. 429–440. https://doi.org/10.1007/978-3-030-99108-1_31

S. Madhankumar, P. Anandraj, A. Varadarajan, R. A. Kumar, and K. Kaleeswaran, “Design and Modelling of Autonomous Mobile Robot for Material Handling,” in 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Mar. 2021, pp. 738–742. https://doi.org/10.1109/ICACCS51430.2021.9441831

J. A. Marvel, R. Bostelman, and J. Falco, “Multi-Robot Assembly Strategies and Metrics,” ACM Comput. Surv., vol. 51, no. 1, pp. 1–32, Jan. 2019. https://doi.org/10.1145/3150225

C. C. Loh and A. Traechtler, “Cooperative Transportation of Aload Using Nonholonomic Mobile Robots,” Procedia Eng., vol. 41, pp. 860–866, 2012. https://doi.org/10.1016/j.proeng.2012.07.255

P. Paniagua-Contro et al., “Extension of Leader-Follower Behaviours for Wheeled Mobile Robots in Multirobot Coordination,” Math. Probl. Eng., vol. 2019, pp. 1–16, Apr. 2019. https://doi.org/10.1155/2019/4957259

E. Tuci, M. H. M. Alkilabi, and O. Akanyeti, “Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art,” Front. Robot. AI, vol. 5, May 2018. https://doi.org/10.3389/frobt.2018.00059

H. Farivarnejad and S. Berman, “Multirobot Control Strategies for Collective Transport,” Annu. Rev. Control. Robot. Auton. Syst., vol. 5, no. 1, pp. 205–219, May 2022. https://doi.org/10.1146/annurev-control-042920-095844

X. An, C. Wu, Y. Lin, M. Lin, T. Yoshinaga, and Y. Ji, “Multi-Robot Systems and Cooperative Object Transport: Communications, Platforms, and Challenges,” IEEE Open J. Comput. Soc., vol. 4, pp. 23–36, 2023. https://doi.org/10.1109/OJCS.2023.3238324

M. Kassawat, E. Cervera, and A. P. del Pobil, “An Omnidirectional Platform for Education and Research in Cooperative Robotics,” Electronics, vol. 11, no. 3, p. 499, Feb. 2022. https://doi.org/10.3390/electronics11030499

L. Escobar, C. Moyano, G. Aguirre, G. Guerra, L. Allauca, and D. Loza, “Multi-Robot platform with features of Cyber-physical systems for education applications,” in 2020 IEEE ANDESCON, Oct. 2020, pp. 1–6. https://doi.org/10.1109/ANDESCON50619.2020.9272030

U. Dziomin, A. Kabysh, R. Stetter, and V. Golovko, “A Multi-Agent Reinforcement Learning Approach for the Efficient Control of Mobile Robots,” in Advances in Intelligent Robotics and Collaborative Automation, New York: River Publishers, 2022, pp. 123–145. https://www.doi.org/10.1201/9781003337119-6

T. Jiang, S. Zhang, R. Wang, and S. Wang, “Development and Verification of an Autonomous and Controllable Mobile Robot Platform,” Mechatronics Intell. Transp. Syst., vol. 2, no. 1, Mar. 2023. https://doi.org/10.56578/mits020102

J. Wu, C. Lv, L. Zhao, R. Li, and G. Wang, “Design and implementation of an omnidirectional mobile robot platform with unified I/O interfaces,” 2017 IEEE Int. Conf. Mechatronics Autom. ICMA 2017, pp. 410–415, 2017. https://doi.org/10.1109/ICMA.2017.8015852

C. Fan, F. Zeng, S. Shirafuji, and J. Ota, “Development of a Three-Mobile-Robot System for Cooperative Transportation,” J. Mech. Robot., vol. 16, no. 2, Feb. 2024. https://doi.org/10.1115/1.4056771

J. Hu, P. Bhowmick, and A. Lanzon, “Group Coordinated Control of Networked Mobile Robots With Applications to Object Transportation,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8269–8274, Aug. 2021. https://doi.org/10.1109/TVT.2021.3093157

H. Ebel, W. Luo, F. Yu, Q. Tang, and P. Eberhard, “Design and Experimental Validation of a Distributed Cooperative Transportation Scheme,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1157–1169, Jul. 2021. https://doi.org/10.1109/TASE.2020.2997411

C. Beltrán, A. Cabrera, G. Delgado, and D. Iturralde, “Centralized Trajectory Tracking Controller for a Multi-robot System,” 2020, pp. 331–345. https://doi.org/10.1007/978-3-030-42531-9_27

M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning to Cooperate via an Attention-Based Communication Neural Network in Decentralized Multi-Robot Exploration,” Entropy, vol. 21, no. 3, p. 294, Mar. 2019. https://doi.org/10.3390/e21030294

P. Verma, P. Dasgupta, and C. Chakraborty, “A novel hybrid centralised decentralised framework for electric vehicles coordination,” IET Smart Grid, vol. 7, no. 1, pp. 89–100, Feb. 2024. https://doi.org/10.1049/stg2.12144

J.-Y. Jhang, C.-J. Lin, and K.-Y. Young, “Cooperative Carrying Control for Multi-Evolutionary Mobile Robots in Unknown Environments,” Electronics, vol. 8, no. 3, p. 298, Mar. 2019. https://doi.org/10.3390/electronics8030298

G. Wang, C. Wang, Q. Du, L. Li, and W. Dong, “Distributed Cooperative Control of Multiple Nonholonomic Mobile Robots,” J. Intell. Robot. Syst., vol. 83, no. 3–4, pp. 525–541, Sep. 2016. https://doi.org/10.1007/s10846-015-0316-x

A. Burghardt, P. Gierlak, and W. Skwarek, “Modeling of dynamics of cooperating wheeled mobile robots,” J. Theor. Appl. Mech., pp. 649–659, Sep. 2021. https://doi.org/10.15632/jtam-pl/141668

L. Zhang, Y. Sun, A. Barth, and O. Ma, “Decentralized Control of Multi-Robot System in Cooperative Object Transportation Using Deep Reinforcement Learning,” IEEE Access, vol. 8, pp. 184109–184119, 2020. https://doi.org/10.1109/ACCESS.2020.3025287

L. Dong, Y. Chen, and X. Qu, “Formation Control Strategy for Nonholonomic Intelligent Vehicles Based on Virtual Structure and Consensus Approach,” Procedia Eng., vol. 137, pp. 415–424, 2016. https://doi.org/10.1016/j.proeng.2016.01.276

Y. Liu, J. Gao, C. Liu, F. Zhao, and J. Zhao, “Reconfigurable Formation Control of Multi-Agents Using Virtual Linkage Approach,” Appl. Sci., vol. 8, no. 7, p. 1109, Jul. 2018. https://doi.org/10.3390/app8071109

M. R. Mohamad Sapiee and K. A. Mohd Annuar, “Synchronous Mobile Robots Formation Control,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 16, no. 3, p. 1183, Jun. 2018. http://doi.org/10.12928/telkomnika.v16i3.8397

Z. Zhang and J. Huang, “Behavioral Formation Control of Multiple Mecanum-wheeled Mobile Manipulators,” in 2020 IEEE 16th International Conference on Control & Automation (ICCA), Oct. 2020, pp. 642–647. https://doi.org/10.1109/ICCA51439.2020.9264349

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License