This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Pattern Recognition of Bima Script Handwritting using Convolutional Neural Network Method
Corresponding Author(s) : Ghina Kamilah Ramdhani
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 9, No. 3, August 2024
Abstract
Bima is one of the regions in West Nusa Tenggara Province. The Bima script is a cultural heritage used as a means of communication by the Bima community in the past. The decline in the use of the Bima script threatens cultural heritage. The government has addressed this issue by providing training to teachers to teach it in schools, but this has still been insufficient due to the limited number of teachers participating in the training. Therefore, one efficient method to assist with this issue is by leveraging modern technology, particularly through machine learning for handwriting recognition. This study aims to find the best CNN model for recognizing the Bima script with diacritics to help preserve Bima's cultural heritage through handwriting recognition. The CNN model is combined with hyperparameter tuning, and then testing is conducted in four different scenarios to evaluate the performance of each model architecture and hyperparameter variation to find the best combination. The dataset used is sourced from the Kaggle platform, and augmentation is performed to increase the total number of images to 6,750, with each image containing 75 images in 90 different classes. In this study, testing is done by dividing the dataset into training and testing sets in an 80:20 ratio. The test results show high performance, achieving an accuracy of 98.00%, precision of 98.19%, recall of 98.00%, and f1-score of 98.00% in scenario 4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bimantoro, A. Aranta, G. S. Nugraha, R. Dwiyansaputra, and A. Y. Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 60–67, Jun. 2021. https://doi.org/10.29303/jcosine.v5i1.387.
- A. Aranta et al., “Learning media for the transliteration of Latin letters into Bima script based on android applications,” Journal of Education and Learning (EduLearn), vol. 15, no. 2, pp. 275–282, May 2021. https://doi.org/10.11591/edulearn.v15i2.19013.
- A. Aranta, F. Bimantoro, and I. P. T. Putrawan, “Penerapan Algoritma Rule Base dengan Pendekatan Hexadesimal pada Transliterasi Aksara Bima Menjadi Huruf Latin,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 2, no. 1, pp. 130–141, Mar. 2020. https://doi.org/10.29303/jtika.v2i1.96.
- Mustiari, F. Bimantoro, G. S. Nugraha, and A. Y. Husodo, “Bima script handwriting pattern recognition using histogram of oriented gradients and backpropagation classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111795.
- N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition system using convolutional neural network,” Neural Comput Appl, vol. 33, no. 7, pp. 2249–2261, Apr. 2021. https://doi.org/10.1007/s00521-020-05070-8.
- T. A. Assegie and P. S. Nair, “Handwritten digits recognition with decision tree classification: A machine learning approach,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4446–4451, Oct. 2019. https://doi.org/10.11591/ijece.v9i5.pp4446-4451.
- T. Q. Vinh, L. H. Duy, and N. T. Nhan, “Vietnamese handwritten character recognition using convolutional neural network,” IAES International Journal of Artificial Intelligence, vol. 9, no. 2, pp. 276–283, Jun. 2020. https://doi.org/10.11591/ijai.v9.i2.
- M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724.
- R. KARAKAYA and S. KAZAN, “Handwritten Digit Recognition Using Machine Learning,” Sakarya University Journal of Science, vol. 25, no. 1, pp. 65–71, Feb. 2021. https://doi.org/10.16984/saufenbilder.801684.
- J. Pareek, D. Singhania, R. R. Kumari, and S. Purohit, “Gujarati Handwritten Character Recognition from Text Images,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 514–523. https://doi.org/10.1016/j.procs.2020.04.055.
- N. Saqib, K. F. Haque, V. P. Yanambaka, and A. Abdelgawad, “Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data,” Algorithms, vol. 15, no. 4, Apr. 2022. https://doi.org/10.3390/a15040129.
- G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16, Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2023. https://doi.org/10.22219/kinetik.v8i2.1667.
- F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” Journal of Informatics and Computer Science (JINACS), vol. 1, no. 04, pp. 200–208, Jul. 2020. https://doi.org/10.26740/jinacs.v1n04.p200-208.
- A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1448–1458, Sep. 2023. https://doi.org/10.11591/ijai.v12.i3.pp1448-1458.
- B. R. Kavitha and C. Srimathi, “Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1183–1190, Apr. 2022. https://doi.org/10.1016/j.jksuci.2019.06.004.
- D. S. Prashanth, R. V. K. Mehta, and N. Sharma, “Classification of Handwritten Devanagari Number - An analysis of Pattern Recognition Tool using Neural Network and CNN,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2445–2457. https://doi.org/10.1016/j.procs.2020.03.297.
- S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved handwritten digit recognition using convolutional neural networks (Cnn),” Sensors (Switzerland), vol. 20, no. 12, pp. 1–18, Jun. 2020. https://doi.org/10.3390/s20123344.
- M. I. Fidatama, F. Bimantoro, G. S. Nugraha, B. Irmawati, and R. Dwiyansaputra, “Recognition of Bima script handwriting patterns using the local binary pattern feature extraction method and K-nearest neighbour classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111770.
- M. Naufal, F. Bimantoro, A. Aranta, and I. G. P. S. Wijaya, “Bima script handwriting pattern recognition with gray level co-occurrence matrix feature extraction and zoning & classification of probabilistic neural networks,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111802.
- M. N. Rizqullah, R. Dwiyansaputra, and F. Bimantoro, “Pengenalan Pola Suku Kata Aksara Bima Dengan Baris Tanda Bunyi Menggunakan Ekstraksi Ciri Moment Invariant Dengan Metode ANN,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 6, no. 1, pp. 264–274, Mar. 2024.
- M. N. Rizqullah, “Bimanese Script,” 2021.
- E. H. Rachmawanto and P. N. Andono, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 183–191, Dec. 2022. https://doi.org/10.23887/janapati.v11i3.50144.
- A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 52, Apr. 2021. https://doi.org/10.26418/jp.v7i1.44133.
- I. Maliki and A. S. Prayoga, “Implementation of Convolutional Neural Network for Sundanese Script Handwriting Recognition with Data Augmentation,” Prayoga Journal of Engineering Science and Technology, vol. 18, no. 2, pp. 1113–1123, 2023.
- R. Aryanto, M. Alfan Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” Jurnal Informasi dan Teknologi, pp. 258–264, May 2023. https://doi.org/10.37034/jidt.v5i1.313.
- S. Abbas et al., “Convolutional neural network based intelligent handwritten document recognition,” Computers, Materials and Continua, vol. 70, no. 3, pp. 4563–4581, 2022. https://doi.org/10.32604/cmc.2022.021102.
- D. Das, D. R. Nayak, R. Dash, B. Majhi, and Y. D. Zhang, “H-WordNet: A holistic convolutional neural network approach for handwritten word recognition,” IET Image Process, vol. 14, no. 9, pp. 1794–1805, Jul. 2020. https://doi.org/10.1049/iet-ipr.2019.1398.
- I. Khandokar, M. Hasan, F. Ernawan, S. Islam, and M. N. Kabir, “Handwritten character recognition using convolutional neural network,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. https://doi.org/10.1088/1742-6596/1918/4/042152.
- A. E. Minarno, M. Hazmi Cokro Mandiri, Y. Munarko, and H. Hariyady, “Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2021. https://doi.org/10.22219/kinetik.v6i2.1219.
- R. Rismawandi, I. G. P. S. Wijaya, and G. S. Nugraha, “Implementasi Metode Convolutional Neural Network Untuk Pengenalan Huruf Aksara Sasak Pada Android,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 4, no. 1, pp. 11–20, Mar. 2022.
- E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021. https://doi.org/10.3390/informatics8040079.
- M. Munsarif, E. Noersasongko, P. N. Andono, and M. A. Soeleman, “Improving convolutional neural network based on hyperparameter optimization using variable length genetic algorithm for english digit handwritten recognition,” International Journal of Advances in Intelligent Informatics, vol. 9, no. 1, pp. 66–78, Mar. 2023. https://doi.org/10.26555/ijain.v9i1.881.
References
F. Bimantoro, A. Aranta, G. S. Nugraha, R. Dwiyansaputra, and A. Y. Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 60–67, Jun. 2021. https://doi.org/10.29303/jcosine.v5i1.387.
A. Aranta et al., “Learning media for the transliteration of Latin letters into Bima script based on android applications,” Journal of Education and Learning (EduLearn), vol. 15, no. 2, pp. 275–282, May 2021. https://doi.org/10.11591/edulearn.v15i2.19013.
A. Aranta, F. Bimantoro, and I. P. T. Putrawan, “Penerapan Algoritma Rule Base dengan Pendekatan Hexadesimal pada Transliterasi Aksara Bima Menjadi Huruf Latin,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 2, no. 1, pp. 130–141, Mar. 2020. https://doi.org/10.29303/jtika.v2i1.96.
Mustiari, F. Bimantoro, G. S. Nugraha, and A. Y. Husodo, “Bima script handwriting pattern recognition using histogram of oriented gradients and backpropagation classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111795.
N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition system using convolutional neural network,” Neural Comput Appl, vol. 33, no. 7, pp. 2249–2261, Apr. 2021. https://doi.org/10.1007/s00521-020-05070-8.
T. A. Assegie and P. S. Nair, “Handwritten digits recognition with decision tree classification: A machine learning approach,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4446–4451, Oct. 2019. https://doi.org/10.11591/ijece.v9i5.pp4446-4451.
T. Q. Vinh, L. H. Duy, and N. T. Nhan, “Vietnamese handwritten character recognition using convolutional neural network,” IAES International Journal of Artificial Intelligence, vol. 9, no. 2, pp. 276–283, Jun. 2020. https://doi.org/10.11591/ijai.v9.i2.
M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724.
R. KARAKAYA and S. KAZAN, “Handwritten Digit Recognition Using Machine Learning,” Sakarya University Journal of Science, vol. 25, no. 1, pp. 65–71, Feb. 2021. https://doi.org/10.16984/saufenbilder.801684.
J. Pareek, D. Singhania, R. R. Kumari, and S. Purohit, “Gujarati Handwritten Character Recognition from Text Images,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 514–523. https://doi.org/10.1016/j.procs.2020.04.055.
N. Saqib, K. F. Haque, V. P. Yanambaka, and A. Abdelgawad, “Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data,” Algorithms, vol. 15, no. 4, Apr. 2022. https://doi.org/10.3390/a15040129.
G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16, Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2023. https://doi.org/10.22219/kinetik.v8i2.1667.
F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” Journal of Informatics and Computer Science (JINACS), vol. 1, no. 04, pp. 200–208, Jul. 2020. https://doi.org/10.26740/jinacs.v1n04.p200-208.
A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1448–1458, Sep. 2023. https://doi.org/10.11591/ijai.v12.i3.pp1448-1458.
B. R. Kavitha and C. Srimathi, “Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1183–1190, Apr. 2022. https://doi.org/10.1016/j.jksuci.2019.06.004.
D. S. Prashanth, R. V. K. Mehta, and N. Sharma, “Classification of Handwritten Devanagari Number - An analysis of Pattern Recognition Tool using Neural Network and CNN,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2445–2457. https://doi.org/10.1016/j.procs.2020.03.297.
S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved handwritten digit recognition using convolutional neural networks (Cnn),” Sensors (Switzerland), vol. 20, no. 12, pp. 1–18, Jun. 2020. https://doi.org/10.3390/s20123344.
M. I. Fidatama, F. Bimantoro, G. S. Nugraha, B. Irmawati, and R. Dwiyansaputra, “Recognition of Bima script handwriting patterns using the local binary pattern feature extraction method and K-nearest neighbour classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111770.
M. Naufal, F. Bimantoro, A. Aranta, and I. G. P. S. Wijaya, “Bima script handwriting pattern recognition with gray level co-occurrence matrix feature extraction and zoning & classification of probabilistic neural networks,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111802.
M. N. Rizqullah, R. Dwiyansaputra, and F. Bimantoro, “Pengenalan Pola Suku Kata Aksara Bima Dengan Baris Tanda Bunyi Menggunakan Ekstraksi Ciri Moment Invariant Dengan Metode ANN,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 6, no. 1, pp. 264–274, Mar. 2024.
M. N. Rizqullah, “Bimanese Script,” 2021.
E. H. Rachmawanto and P. N. Andono, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 183–191, Dec. 2022. https://doi.org/10.23887/janapati.v11i3.50144.
A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 52, Apr. 2021. https://doi.org/10.26418/jp.v7i1.44133.
I. Maliki and A. S. Prayoga, “Implementation of Convolutional Neural Network for Sundanese Script Handwriting Recognition with Data Augmentation,” Prayoga Journal of Engineering Science and Technology, vol. 18, no. 2, pp. 1113–1123, 2023.
R. Aryanto, M. Alfan Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” Jurnal Informasi dan Teknologi, pp. 258–264, May 2023. https://doi.org/10.37034/jidt.v5i1.313.
S. Abbas et al., “Convolutional neural network based intelligent handwritten document recognition,” Computers, Materials and Continua, vol. 70, no. 3, pp. 4563–4581, 2022. https://doi.org/10.32604/cmc.2022.021102.
D. Das, D. R. Nayak, R. Dash, B. Majhi, and Y. D. Zhang, “H-WordNet: A holistic convolutional neural network approach for handwritten word recognition,” IET Image Process, vol. 14, no. 9, pp. 1794–1805, Jul. 2020. https://doi.org/10.1049/iet-ipr.2019.1398.
I. Khandokar, M. Hasan, F. Ernawan, S. Islam, and M. N. Kabir, “Handwritten character recognition using convolutional neural network,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. https://doi.org/10.1088/1742-6596/1918/4/042152.
A. E. Minarno, M. Hazmi Cokro Mandiri, Y. Munarko, and H. Hariyady, “Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2021. https://doi.org/10.22219/kinetik.v6i2.1219.
R. Rismawandi, I. G. P. S. Wijaya, and G. S. Nugraha, “Implementasi Metode Convolutional Neural Network Untuk Pengenalan Huruf Aksara Sasak Pada Android,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 4, no. 1, pp. 11–20, Mar. 2022.
E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021. https://doi.org/10.3390/informatics8040079.
M. Munsarif, E. Noersasongko, P. N. Andono, and M. A. Soeleman, “Improving convolutional neural network based on hyperparameter optimization using variable length genetic algorithm for english digit handwritten recognition,” International Journal of Advances in Intelligent Informatics, vol. 9, no. 1, pp. 66–78, Mar. 2023. https://doi.org/10.26555/ijain.v9i1.881.