Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 3, August 2024
  4. Articles

Issue

Vol. 9, No. 3, August 2024

Issue Published : Aug 31, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Pattern Recognition of Bima Script Handwritting using Convolutional Neural Network Method

https://doi.org/10.22219/kinetik.v9i3.1990
Ghina Kamilah Ramdhani
Universitas Mataram
Fitri Bimantoro
Universitas Mataram
I Gede Pasek Suta Wijaya
Universitas Mataram

Corresponding Author(s) : Ghina Kamilah Ramdhani

ghinakr6@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 3, August 2024
Article Published : Aug 30, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Bima is one of the regions in West Nusa Tenggara Province. The Bima script is a cultural heritage used as a means of communication by the Bima community in the past. The decline in the use of the Bima script threatens cultural heritage. The government has addressed this issue by providing training to teachers to teach it in schools, but this has still been insufficient due to the limited number of teachers participating in the training. Therefore, one efficient method to assist with this issue is by leveraging modern technology, particularly through machine learning for handwriting recognition. This study aims to find the best CNN model for recognizing the Bima script with diacritics to help preserve Bima's cultural heritage through handwriting recognition. The CNN model is combined with hyperparameter tuning, and then testing is conducted in four different scenarios to evaluate the performance of each model architecture and hyperparameter variation to find the best combination. The dataset used is sourced from the Kaggle platform, and augmentation is performed to increase the total number of images to 6,750, with each image containing 75 images in 90 different classes. In this study, testing is done by dividing the dataset into training and testing sets in an 80:20 ratio. The test results show high performance, achieving an accuracy of 98.00%, precision of 98.19%, recall of 98.00%, and f1-score of 98.00% in scenario 4.

Keywords

Bima Convolutional Neural Network Pattern Recognition Handwritting
Ramdhani, G. K., Bimantoro, F., & Wijaya, I. G. P. S. (2024). Pattern Recognition of Bima Script Handwritting using Convolutional Neural Network Method. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(3), 277-286. https://doi.org/10.22219/kinetik.v9i3.1990
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. F. Bimantoro, A. Aranta, G. S. Nugraha, R. Dwiyansaputra, and A. Y. Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 60–67, Jun. 2021. https://doi.org/10.29303/jcosine.v5i1.387.
  2. A. Aranta et al., “Learning media for the transliteration of Latin letters into Bima script based on android applications,” Journal of Education and Learning (EduLearn), vol. 15, no. 2, pp. 275–282, May 2021. https://doi.org/10.11591/edulearn.v15i2.19013.
  3. A. Aranta, F. Bimantoro, and I. P. T. Putrawan, “Penerapan Algoritma Rule Base dengan Pendekatan Hexadesimal pada Transliterasi Aksara Bima Menjadi Huruf Latin,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 2, no. 1, pp. 130–141, Mar. 2020. https://doi.org/10.29303/jtika.v2i1.96.
  4. Mustiari, F. Bimantoro, G. S. Nugraha, and A. Y. Husodo, “Bima script handwriting pattern recognition using histogram of oriented gradients and backpropagation classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111795.
  5. N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition system using convolutional neural network,” Neural Comput Appl, vol. 33, no. 7, pp. 2249–2261, Apr. 2021. https://doi.org/10.1007/s00521-020-05070-8.
  6. T. A. Assegie and P. S. Nair, “Handwritten digits recognition with decision tree classification: A machine learning approach,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4446–4451, Oct. 2019. https://doi.org/10.11591/ijece.v9i5.pp4446-4451.
  7. T. Q. Vinh, L. H. Duy, and N. T. Nhan, “Vietnamese handwritten character recognition using convolutional neural network,” IAES International Journal of Artificial Intelligence, vol. 9, no. 2, pp. 276–283, Jun. 2020. https://doi.org/10.11591/ijai.v9.i2.
  8. M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724.
  9. R. KARAKAYA and S. KAZAN, “Handwritten Digit Recognition Using Machine Learning,” Sakarya University Journal of Science, vol. 25, no. 1, pp. 65–71, Feb. 2021. https://doi.org/10.16984/saufenbilder.801684.
  10. J. Pareek, D. Singhania, R. R. Kumari, and S. Purohit, “Gujarati Handwritten Character Recognition from Text Images,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 514–523. https://doi.org/10.1016/j.procs.2020.04.055.
  11. N. Saqib, K. F. Haque, V. P. Yanambaka, and A. Abdelgawad, “Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data,” Algorithms, vol. 15, no. 4, Apr. 2022. https://doi.org/10.3390/a15040129.
  12. G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16, Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2023. https://doi.org/10.22219/kinetik.v8i2.1667.
  13. F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” Journal of Informatics and Computer Science (JINACS), vol. 1, no. 04, pp. 200–208, Jul. 2020. https://doi.org/10.26740/jinacs.v1n04.p200-208.
  14. A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1448–1458, Sep. 2023. https://doi.org/10.11591/ijai.v12.i3.pp1448-1458.
  15. B. R. Kavitha and C. Srimathi, “Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1183–1190, Apr. 2022. https://doi.org/10.1016/j.jksuci.2019.06.004.
  16. D. S. Prashanth, R. V. K. Mehta, and N. Sharma, “Classification of Handwritten Devanagari Number - An analysis of Pattern Recognition Tool using Neural Network and CNN,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2445–2457. https://doi.org/10.1016/j.procs.2020.03.297.
  17. S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved handwritten digit recognition using convolutional neural networks (Cnn),” Sensors (Switzerland), vol. 20, no. 12, pp. 1–18, Jun. 2020. https://doi.org/10.3390/s20123344.
  18. M. I. Fidatama, F. Bimantoro, G. S. Nugraha, B. Irmawati, and R. Dwiyansaputra, “Recognition of Bima script handwriting patterns using the local binary pattern feature extraction method and K-nearest neighbour classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111770.
  19. M. Naufal, F. Bimantoro, A. Aranta, and I. G. P. S. Wijaya, “Bima script handwriting pattern recognition with gray level co-occurrence matrix feature extraction and zoning & classification of probabilistic neural networks,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111802.
  20. M. N. Rizqullah, R. Dwiyansaputra, and F. Bimantoro, “Pengenalan Pola Suku Kata Aksara Bima Dengan Baris Tanda Bunyi Menggunakan Ekstraksi Ciri Moment Invariant Dengan Metode ANN,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 6, no. 1, pp. 264–274, Mar. 2024.
  21. M. N. Rizqullah, “Bimanese Script,” 2021.
  22. E. H. Rachmawanto and P. N. Andono, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 183–191, Dec. 2022. https://doi.org/10.23887/janapati.v11i3.50144.
  23. A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 52, Apr. 2021. https://doi.org/10.26418/jp.v7i1.44133.
  24. I. Maliki and A. S. Prayoga, “Implementation of Convolutional Neural Network for Sundanese Script Handwriting Recognition with Data Augmentation,” Prayoga Journal of Engineering Science and Technology, vol. 18, no. 2, pp. 1113–1123, 2023.
  25. R. Aryanto, M. Alfan Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” Jurnal Informasi dan Teknologi, pp. 258–264, May 2023. https://doi.org/10.37034/jidt.v5i1.313.
  26. S. Abbas et al., “Convolutional neural network based intelligent handwritten document recognition,” Computers, Materials and Continua, vol. 70, no. 3, pp. 4563–4581, 2022. https://doi.org/10.32604/cmc.2022.021102.
  27. D. Das, D. R. Nayak, R. Dash, B. Majhi, and Y. D. Zhang, “H-WordNet: A holistic convolutional neural network approach for handwritten word recognition,” IET Image Process, vol. 14, no. 9, pp. 1794–1805, Jul. 2020. https://doi.org/10.1049/iet-ipr.2019.1398.
  28. I. Khandokar, M. Hasan, F. Ernawan, S. Islam, and M. N. Kabir, “Handwritten character recognition using convolutional neural network,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. https://doi.org/10.1088/1742-6596/1918/4/042152.
  29. A. E. Minarno, M. Hazmi Cokro Mandiri, Y. Munarko, and H. Hariyady, “Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2021. https://doi.org/10.22219/kinetik.v6i2.1219.
  30. R. Rismawandi, I. G. P. S. Wijaya, and G. S. Nugraha, “Implementasi Metode Convolutional Neural Network Untuk Pengenalan Huruf Aksara Sasak Pada Android,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 4, no. 1, pp. 11–20, Mar. 2022.
  31. E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021. https://doi.org/10.3390/informatics8040079.
  32. M. Munsarif, E. Noersasongko, P. N. Andono, and M. A. Soeleman, “Improving convolutional neural network based on hyperparameter optimization using variable length genetic algorithm for english digit handwritten recognition,” International Journal of Advances in Intelligent Informatics, vol. 9, no. 1, pp. 66–78, Mar. 2023. https://doi.org/10.26555/ijain.v9i1.881.
Read More

References


F. Bimantoro, A. Aranta, G. S. Nugraha, R. Dwiyansaputra, and A. Y. Husodo, “Pengenalan Pola Tulisan Tangan Aksara Bima menggunakan Ciri Tekstur dan KNN,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 60–67, Jun. 2021. https://doi.org/10.29303/jcosine.v5i1.387.

A. Aranta et al., “Learning media for the transliteration of Latin letters into Bima script based on android applications,” Journal of Education and Learning (EduLearn), vol. 15, no. 2, pp. 275–282, May 2021. https://doi.org/10.11591/edulearn.v15i2.19013.

A. Aranta, F. Bimantoro, and I. P. T. Putrawan, “Penerapan Algoritma Rule Base dengan Pendekatan Hexadesimal pada Transliterasi Aksara Bima Menjadi Huruf Latin,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 2, no. 1, pp. 130–141, Mar. 2020. https://doi.org/10.29303/jtika.v2i1.96.

Mustiari, F. Bimantoro, G. S. Nugraha, and A. Y. Husodo, “Bima script handwriting pattern recognition using histogram of oriented gradients and backpropagation classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111795.

N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition system using convolutional neural network,” Neural Comput Appl, vol. 33, no. 7, pp. 2249–2261, Apr. 2021. https://doi.org/10.1007/s00521-020-05070-8.

T. A. Assegie and P. S. Nair, “Handwritten digits recognition with decision tree classification: A machine learning approach,” International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4446–4451, Oct. 2019. https://doi.org/10.11591/ijece.v9i5.pp4446-4451.

T. Q. Vinh, L. H. Duy, and N. T. Nhan, “Vietnamese handwritten character recognition using convolutional neural network,” IAES International Journal of Artificial Intelligence, vol. 9, no. 2, pp. 276–283, Jun. 2020. https://doi.org/10.11591/ijai.v9.i2.

M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019. https://doi.org/10.22219/kinetik.v4i2.724.

R. KARAKAYA and S. KAZAN, “Handwritten Digit Recognition Using Machine Learning,” Sakarya University Journal of Science, vol. 25, no. 1, pp. 65–71, Feb. 2021. https://doi.org/10.16984/saufenbilder.801684.

J. Pareek, D. Singhania, R. R. Kumari, and S. Purohit, “Gujarati Handwritten Character Recognition from Text Images,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 514–523. https://doi.org/10.1016/j.procs.2020.04.055.

N. Saqib, K. F. Haque, V. P. Yanambaka, and A. Abdelgawad, “Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data,” Algorithms, vol. 15, no. 4, Apr. 2022. https://doi.org/10.3390/a15040129.

G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s Architecture GoogleNet, AlexNet, VGG-16, Lenet -5, Resnet-50 in Arabic Handwriting Pattern Recognition,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2023. https://doi.org/10.22219/kinetik.v8i2.1667.

F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” Journal of Informatics and Computer Science (JINACS), vol. 1, no. 04, pp. 200–208, Jul. 2020. https://doi.org/10.26740/jinacs.v1n04.p200-208.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1448–1458, Sep. 2023. https://doi.org/10.11591/ijai.v12.i3.pp1448-1458.

B. R. Kavitha and C. Srimathi, “Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4, pp. 1183–1190, Apr. 2022. https://doi.org/10.1016/j.jksuci.2019.06.004.

D. S. Prashanth, R. V. K. Mehta, and N. Sharma, “Classification of Handwritten Devanagari Number - An analysis of Pattern Recognition Tool using Neural Network and CNN,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 2445–2457. https://doi.org/10.1016/j.procs.2020.03.297.

S. Ahlawat, A. Choudhary, A. Nayyar, S. Singh, and B. Yoon, “Improved handwritten digit recognition using convolutional neural networks (Cnn),” Sensors (Switzerland), vol. 20, no. 12, pp. 1–18, Jun. 2020. https://doi.org/10.3390/s20123344.

M. I. Fidatama, F. Bimantoro, G. S. Nugraha, B. Irmawati, and R. Dwiyansaputra, “Recognition of Bima script handwriting patterns using the local binary pattern feature extraction method and K-nearest neighbour classification method,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111770.

M. Naufal, F. Bimantoro, A. Aranta, and I. G. P. S. Wijaya, “Bima script handwriting pattern recognition with gray level co-occurrence matrix feature extraction and zoning & classification of probabilistic neural networks,” in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. https://doi.org/10.1063/5.0111802.

M. N. Rizqullah, R. Dwiyansaputra, and F. Bimantoro, “Pengenalan Pola Suku Kata Aksara Bima Dengan Baris Tanda Bunyi Menggunakan Ekstraksi Ciri Moment Invariant Dengan Metode ANN,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 6, no. 1, pp. 264–274, Mar. 2024.

M. N. Rizqullah, “Bimanese Script,” 2021.

E. H. Rachmawanto and P. N. Andono, “Deteksi Karakter Hiragana Menggunakan Metode Convolutional Neural Network,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 183–191, Dec. 2022. https://doi.org/10.23887/janapati.v11i3.50144.

A. Mulyanto, E. Susanti, F. Rossi, W. Wajiran, and R. I. Borman, “Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR),” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 1, p. 52, Apr. 2021. https://doi.org/10.26418/jp.v7i1.44133.

I. Maliki and A. S. Prayoga, “Implementation of Convolutional Neural Network for Sundanese Script Handwriting Recognition with Data Augmentation,” Prayoga Journal of Engineering Science and Technology, vol. 18, no. 2, pp. 1113–1123, 2023.

R. Aryanto, M. Alfan Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” Jurnal Informasi dan Teknologi, pp. 258–264, May 2023. https://doi.org/10.37034/jidt.v5i1.313.

S. Abbas et al., “Convolutional neural network based intelligent handwritten document recognition,” Computers, Materials and Continua, vol. 70, no. 3, pp. 4563–4581, 2022. https://doi.org/10.32604/cmc.2022.021102.

D. Das, D. R. Nayak, R. Dash, B. Majhi, and Y. D. Zhang, “H-WordNet: A holistic convolutional neural network approach for handwritten word recognition,” IET Image Process, vol. 14, no. 9, pp. 1794–1805, Jul. 2020. https://doi.org/10.1049/iet-ipr.2019.1398.

I. Khandokar, M. Hasan, F. Ernawan, S. Islam, and M. N. Kabir, “Handwritten character recognition using convolutional neural network,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. https://doi.org/10.1088/1742-6596/1918/4/042152.

A. E. Minarno, M. Hazmi Cokro Mandiri, Y. Munarko, and H. Hariyady, “Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, May 2021. https://doi.org/10.22219/kinetik.v6i2.1219.

R. Rismawandi, I. G. P. S. Wijaya, and G. S. Nugraha, “Implementasi Metode Convolutional Neural Network Untuk Pengenalan Huruf Aksara Sasak Pada Android,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 4, no. 1, pp. 11–20, Mar. 2022.

E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021. https://doi.org/10.3390/informatics8040079.

M. Munsarif, E. Noersasongko, P. N. Andono, and M. A. Soeleman, “Improving convolutional neural network based on hyperparameter optimization using variable length genetic algorithm for english digit handwritten recognition,” International Journal of Advances in Intelligent Informatics, vol. 9, no. 1, pp. 66–78, Mar. 2023. https://doi.org/10.26555/ijain.v9i1.881.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License