Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 3, August 2024
  4. Articles

Issue

Vol. 9, No. 3, August 2024

Issue Published : Aug 31, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Smart AODV Routing Protocol Strategies Based on Learning Automata to Improve V2V Communication Quality of Services in VANET

https://doi.org/10.22219/kinetik.v9i3.1969
Ketut Bayu Yogha Bintoro
Universitas Trilogi
Tri Kuntoro Priyambodo
Gadjah Mada University
Yadie Prasetyo Sardjono
Universitas Trilogi

Corresponding Author(s) : Ketut Bayu Yogha Bintoro

ketutbayu@trilogi.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 3, August 2024
Article Published : Aug 30, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The Adhoc On-Demand Distance Vector (AODV) protocol faces challenges in selecting the best relay nodes, which requires optimization to improve performance in Vehicular ad-hoc networks (VANETs). This study aims to enhance Vehicle-to-Vehicle (V2V) communication in VANETs by implementing the Learning Automata-Driven Ad-hoc On-Demand Distance Vector (LA-AODV) routing protocol. LA-AODV is designed to achieve higher packet delivery ratios and optimize data transfer rates, even under congested network conditions, by dynamically adjusting to changing network scenarios. The performance evaluation includes six key metrics analyzed under varying node densities and time intervals, comparing LA-AODV against the standard AODV protocol. Results indicate that LA-AODV consistently outperforms AODV, demonstrating improved efficiency in flood identifier management, reduced data loss, higher packet delivery ratios, better throughput, and reduced end-to-end delay and jitter. Specifically, under a 20-node scenario, LA-AODV exhibits lower flood ID scores (54 vs. 88), reduced packet loss (11% vs. 12%), higher PDR (88.0% vs. 87.0%), and superior throughput (85.34 Kbps vs. 47.26 Kbps). Additionally, LA-AODV achieves lower end-to-end delay (6.84E+09 ns vs. 3.76E+10 ns) and jitter (2.52E+09 ns vs. 2.15E+10 ns). These findings suggest that LA-AODV significantly enhances Quality of Service (QoS) in vehicular ad-hoc networks, positioning it as a promising solution for optimizing V2V communication performance.

Keywords

V2V communication Learning Automata AODV Routing Protocol NS3 VANET
Bintoro, K. B. Y., Priyambodo, T. K., & Sardjono, Y. P. (2024). Smart AODV Routing Protocol Strategies Based on Learning Automata to Improve V2V Communication Quality of Services in VANET. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(3), 255-266. https://doi.org/10.22219/kinetik.v9i3.1969
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. J. Liu et al., “Investigation of 5G and 4G V2V Communication Channel Performance Under Severe Weather,” pp. 12–17, 2022. https://doi.org/10.1109/WiSEE49342.2022.9926867
  2. F. Belamri, S. Boulfekhar, and D. Aissani, “A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET),” Telecommunication Systems. 2021. https://doi.org/10.1007/s11235-021-00797-8
  3. T. Peng et al., “A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles,” Expert Syst. Appl., vol. 141, 2020. https://doi.org/10.1016/j.eswa.2019.112953
  4. D. Chen, M. Zhao, D. Sun, L. Zheng, S. Jin, and J. Chen, “Robust H∞ control of cooperative driving system with external disturbances and communication delays in the vicinity of traffic signals,” Phys. A Stat. Mech. its Appl., vol. 542, p. 123385, 2020. https://doi.org/10.1016/j.physa.2019.123385
  5. B. S. Kusuma, D. Risqiwati, and D. R. Akbi, “Analisis Perbandingan Performansi Protokol Ad Hoc On-Demand Distance Vector dan Zone Routing Protocol Pada Mobile Ad Hoc Network,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, 2017. https://doi.org/10.22219/kinetik.v2i3.91
  6. T. K. Bhatia, R. K. Ramachandran, R. Doss, and L. Pan, “A Survey on Controlling the Congestion in Vehicleto-Vehicle Communication,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020. https://doi.org/10.1109/ICRITO48877.2020.9197884
  7. A. H. El Fawal, A. Mansour, and M. Najem, “V2V Influence on M2M and H2H Traffics During Emergency Scenarios,” Global Advancements in Connected and Intelligent Mobility. IGI Global, pp. 93–134, 2020. https://doi.org/10.4018/978-1-5225-9019-4.ch003
  8. K. B. Y. Bintoro and T. K. Priyambodo, “Learning Automata-Based AODV to Improve V2V Communication in A Dynamic Traffic Simulation,” Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 666–678, 2024. https://doi.org/10.22266/ijies2024.0229.56
  9. R. S. Bali, N. Kumar, and J. J. P. C. Rodrigues, “An efficient energy-aware predictive clustering approach for vehicular ad hoc networks,” Int. J. Commun. Syst., vol. 30, no. 2, 2017. https://doi.org/10.1002/dac.2924
  10. R. Arief, R. Anggoro, and F. X. Arunanto, “Implementation of Aodv Routing Protocol With Vehicle Movement Prediction in Vanet,” Surabaya Inst. Teknol. Sepuluh Novemb., 2016.
  11. K. A. Darabkh, M. S. A. Judeh, H. Bany Salameh, and S. Althunibat, “Mobility aware and dual phase AODV protocol with adaptive hello messages over vehicular ad hoc networks,” AEU - Int. J. Electron. Commun., vol. 94, no. July, pp. 277–292, 2018. https://doi.org/10.1016/j.aeue.2018.07.020
  12. M. R. Hasan, Y. Zhao, Y. Luo, G. Wang, and R. M. Winter, “An Effective AODV-based Flooding Detection and Prevention for Smart Meter Network,” Procedia Comput. Sci., vol. 129, pp. 454–460, 2018. https://doi.org/10.1016/j.procs.2018.03.024
  13. M. H. Homaei, S. S. Band, A. Pescape, and A. Mosavi, “DDSLA-RPL: Dynamic Decision System Based on Learning Automata in the RPL Protocol for Achieving QoS,” IEEE Access, 2021. https://ui.adsabs.harvard.edu/link_gateway/2021IEEEA...963131H/doi:10.1109/ACCESS.2021.3075378
  14. D. Zhang, C. Gong, T. Zhang, J. Zhang, and M. Piao, “A new algorithm of clustering AODV based on edge computing strategy in IOV,” Wirel. Networks, 2021. https://doi.org/10.1007/s11276-021-02624-z
  15. A. E. Mezher, A. A. AbdulRazzaq, and R. K. Hassoun, “A comparison of the performance of the ad hoc on-demand distance vector protocol in the urban and highway environment,” Indones. J. Electr. Eng. Comput. Sci., vol. 30, no. 3, pp. 1509–1515, 2023. http://doi.org/10.11591/ijeecs.v30.i3.pp1509-1515
  16. V. Saritha, P. V. Krishna, S. Misra, and M. S. Obaidat, “Learning automata-based channel reservation scheme to enhance QoS in vehicular adhoc networks,” 2016 IEEE Glob. Commun. Conf. GLOBECOM 2016 - Proc., pp. 1–6, 2016. https://doi.org/10.1109/GLOCOM.2016.7841949
  17. A. Asma, “PSO-based dynamic distributed algorithm for automatic task clustering in a robotic swarm,” Procedia Computer Science, vol. 159. pp. 1103–1112, 2019. https://doi.org/10.1016/j.procs.2019.09.279
  18. V. Saritha, P. V. Krishna, S. Misra, and M. S. Obaidat, “Learning automata based optimized multipath routingusing leapfrog algorithm for VANETs,” IEEE Int. Conf. Commun., pp. 1–5, 2017. https://doi.org/10.1109/ICC.2017.7997401
  19. S. Zhao and K. Zhang, “A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions,” Transp. Res. Part B Methodol., vol. 138, pp. 144–178, 2020. https://doi.org/10.1016/j.trb.2020.05.001
  20. H. Ye, “Deep Reinforcement Learning Based Resource Allocation for V2V Communications,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3163–3173, 2019. https://doi.org/10.1109/TVT.2019.2897134
  21. T. K. Priyambodo, D. Wijayanto, and M. S. Gitakarma, “Performance optimization of MANET networks through routing protocol analysis,” Computers, 2021. https://doi.org/10.3390/computers10010002
  22. G. A. Beletsioti and G. S. Member, “A Learning-Automata-Based Congestion-Aware Scheme for Energy-Efficient Elastic Optical Networks,” IEEE Access, vol. 8, 2020.
  23. J. Naskath, B. Paramasivan, Z. Mustafa, and H. Aldabbas, “Connectivity analysis of V2V communication with discretionary lane changing approach,” J. Supercomput., 2022. https://doi.org/10.1007/s11227-021-04086-8
  24. D. Anadu, “in a VANET Environment,” 2018 IEEE Int. Instrum. Meas. Technol. Conf., pp. 1–6, 2018.
  25. R. S. Bali and N. Kumar, “Learning Automata-assisted Predictive Clustering approach for Vehicular Cyber-Physical System,” Comput. Electr. Eng., vol. 52, pp. 82–97, 2016. https://doi.org/10.1016/j.compeleceng.2015.09.007
Read More

References


J. Liu et al., “Investigation of 5G and 4G V2V Communication Channel Performance Under Severe Weather,” pp. 12–17, 2022. https://doi.org/10.1109/WiSEE49342.2022.9926867

F. Belamri, S. Boulfekhar, and D. Aissani, “A survey on QoS routing protocols in Vehicular Ad Hoc Network (VANET),” Telecommunication Systems. 2021. https://doi.org/10.1007/s11235-021-00797-8

T. Peng et al., “A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles,” Expert Syst. Appl., vol. 141, 2020. https://doi.org/10.1016/j.eswa.2019.112953

D. Chen, M. Zhao, D. Sun, L. Zheng, S. Jin, and J. Chen, “Robust H∞ control of cooperative driving system with external disturbances and communication delays in the vicinity of traffic signals,” Phys. A Stat. Mech. its Appl., vol. 542, p. 123385, 2020. https://doi.org/10.1016/j.physa.2019.123385

B. S. Kusuma, D. Risqiwati, and D. R. Akbi, “Analisis Perbandingan Performansi Protokol Ad Hoc On-Demand Distance Vector dan Zone Routing Protocol Pada Mobile Ad Hoc Network,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, 2017. https://doi.org/10.22219/kinetik.v2i3.91

T. K. Bhatia, R. K. Ramachandran, R. Doss, and L. Pan, “A Survey on Controlling the Congestion in Vehicleto-Vehicle Communication,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020. https://doi.org/10.1109/ICRITO48877.2020.9197884

A. H. El Fawal, A. Mansour, and M. Najem, “V2V Influence on M2M and H2H Traffics During Emergency Scenarios,” Global Advancements in Connected and Intelligent Mobility. IGI Global, pp. 93–134, 2020. https://doi.org/10.4018/978-1-5225-9019-4.ch003

K. B. Y. Bintoro and T. K. Priyambodo, “Learning Automata-Based AODV to Improve V2V Communication in A Dynamic Traffic Simulation,” Int. J. Intell. Eng. Syst., vol. 17, no. 1, pp. 666–678, 2024. https://doi.org/10.22266/ijies2024.0229.56

R. S. Bali, N. Kumar, and J. J. P. C. Rodrigues, “An efficient energy-aware predictive clustering approach for vehicular ad hoc networks,” Int. J. Commun. Syst., vol. 30, no. 2, 2017. https://doi.org/10.1002/dac.2924

R. Arief, R. Anggoro, and F. X. Arunanto, “Implementation of Aodv Routing Protocol With Vehicle Movement Prediction in Vanet,” Surabaya Inst. Teknol. Sepuluh Novemb., 2016.

K. A. Darabkh, M. S. A. Judeh, H. Bany Salameh, and S. Althunibat, “Mobility aware and dual phase AODV protocol with adaptive hello messages over vehicular ad hoc networks,” AEU - Int. J. Electron. Commun., vol. 94, no. July, pp. 277–292, 2018. https://doi.org/10.1016/j.aeue.2018.07.020

M. R. Hasan, Y. Zhao, Y. Luo, G. Wang, and R. M. Winter, “An Effective AODV-based Flooding Detection and Prevention for Smart Meter Network,” Procedia Comput. Sci., vol. 129, pp. 454–460, 2018. https://doi.org/10.1016/j.procs.2018.03.024

M. H. Homaei, S. S. Band, A. Pescape, and A. Mosavi, “DDSLA-RPL: Dynamic Decision System Based on Learning Automata in the RPL Protocol for Achieving QoS,” IEEE Access, 2021. https://ui.adsabs.harvard.edu/link_gateway/2021IEEEA...963131H/doi:10.1109/ACCESS.2021.3075378

D. Zhang, C. Gong, T. Zhang, J. Zhang, and M. Piao, “A new algorithm of clustering AODV based on edge computing strategy in IOV,” Wirel. Networks, 2021. https://doi.org/10.1007/s11276-021-02624-z

A. E. Mezher, A. A. AbdulRazzaq, and R. K. Hassoun, “A comparison of the performance of the ad hoc on-demand distance vector protocol in the urban and highway environment,” Indones. J. Electr. Eng. Comput. Sci., vol. 30, no. 3, pp. 1509–1515, 2023. http://doi.org/10.11591/ijeecs.v30.i3.pp1509-1515

V. Saritha, P. V. Krishna, S. Misra, and M. S. Obaidat, “Learning automata-based channel reservation scheme to enhance QoS in vehicular adhoc networks,” 2016 IEEE Glob. Commun. Conf. GLOBECOM 2016 - Proc., pp. 1–6, 2016. https://doi.org/10.1109/GLOCOM.2016.7841949

A. Asma, “PSO-based dynamic distributed algorithm for automatic task clustering in a robotic swarm,” Procedia Computer Science, vol. 159. pp. 1103–1112, 2019. https://doi.org/10.1016/j.procs.2019.09.279

V. Saritha, P. V. Krishna, S. Misra, and M. S. Obaidat, “Learning automata based optimized multipath routingusing leapfrog algorithm for VANETs,” IEEE Int. Conf. Commun., pp. 1–5, 2017. https://doi.org/10.1109/ICC.2017.7997401

S. Zhao and K. Zhang, “A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions,” Transp. Res. Part B Methodol., vol. 138, pp. 144–178, 2020. https://doi.org/10.1016/j.trb.2020.05.001

H. Ye, “Deep Reinforcement Learning Based Resource Allocation for V2V Communications,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3163–3173, 2019. https://doi.org/10.1109/TVT.2019.2897134

T. K. Priyambodo, D. Wijayanto, and M. S. Gitakarma, “Performance optimization of MANET networks through routing protocol analysis,” Computers, 2021. https://doi.org/10.3390/computers10010002

G. A. Beletsioti and G. S. Member, “A Learning-Automata-Based Congestion-Aware Scheme for Energy-Efficient Elastic Optical Networks,” IEEE Access, vol. 8, 2020.

J. Naskath, B. Paramasivan, Z. Mustafa, and H. Aldabbas, “Connectivity analysis of V2V communication with discretionary lane changing approach,” J. Supercomput., 2022. https://doi.org/10.1007/s11227-021-04086-8

D. Anadu, “in a VANET Environment,” 2018 IEEE Int. Instrum. Meas. Technol. Conf., pp. 1–6, 2018.

R. S. Bali and N. Kumar, “Learning Automata-assisted Predictive Clustering approach for Vehicular Cyber-Physical System,” Comput. Electr. Eng., vol. 52, pp. 82–97, 2016. https://doi.org/10.1016/j.compeleceng.2015.09.007

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 0 Download : 1

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License