Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 2, May 2024
  4. Articles

Issue

Vol. 9, No. 2, May 2024

Issue Published : May 31, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Movie Recommender System on Twitter Using Weighted Hybrid Filtering and GRU

https://doi.org/10.22219/kinetik.v9i2.1941
Nico Valentino
Telkom University
Erwin Budi Setiawan
Telkom University

Corresponding Author(s) : Nico Valentino

nicvalentino14@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 2, May 2024
Article Published : May 27, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The development of the industry in the film sector has experienced rapid growth, marked by the emergence of film streaming platforms such as Netflix and Disney+. With the abundance of available films, users face difficulty in choosing films that suit their preferences. Recommender systems can be a solution to this problem for users. Recommender systems rely on user reviews, making Twitter a platform that can be used to collect user reviews of a film. This study will develop a recommender system that has the potential to provide item recommendations to users using the weighted hybrid filtering and GRU methods. The weighted hybrid filtering used is a combination of collaborative filtering and content-based filtering methods. The dataset used in this study was obtained by crawling tweets relevant to the feedback of specific accounts regarding a film. The dataset resulting from the data crawling consists of a total of 854 films, 45 users and 34,086 tweets consisting of film reviews from Twitter users. The GRU model classification is performed on the results of weighted hybrid filtering with model optimization involving testing various test size scenarios and optimizer methods. The test sizes used are 40%, 30%, and 20%. The optimizer methods used include Adam, Nadam, Adamax, Adadelta, Adagrad, and SGD. The research results show that the optimal outcome is obtained using the Nadam optimization method. The performance evaluation yielded 85.74% precision, 88.63% recall, 88.63% accuracy, and 86.30% F1-score.

Keywords

Recommender System Hybrid Filtering GRU Netflix Disney
Valentino, N., & Setiawan, E. B. (2024). Movie Recommender System on Twitter Using Weighted Hybrid Filtering and GRU. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(2), 159-172. https://doi.org/10.22219/kinetik.v9i2.1941
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. K. Sailunaz and R. Alhajj, “Emotion and sentiment analysis from Twitter text,” J. Comput. Sci., vol. 36, p. 101003, 2019, doi: https://doi.org/10.1016/j.jocs.2019.05.009.
  2. H. Tahmasebi, R. Ravanmehr, and R. Mohamadrezaei, “Social movie recommender system based on deep autoencoder network using Twitter data,” Neural Comput. Appl., vol. 33, no. 5, pp. 1607–1623, 2021, doi: https://doi.org/10.1007/s00521-020-05085-1.
  3. G. Geetha, M. Safa, C. Fancy, and D. Saranya, “A Hybrid Approach using Collaborative filtering and Content based Filtering for Recommender System,” J. Phys. Conf. Ser., vol. 1000, no. 1, 2018, doi: https://doi.org/10.1088/1742-6596/1000/1/012101.
  4. N. Ifada, T. F. Rahman, and M. K. Sophan, “Comparing collaborative filtering and hybrid based approaches for movie recommendation,” Proceeding - 6th Inf. Technol. Int. Semin. ITIS 2020, pp. 219–223, 2020, doi: https://doi.org/10.1109/ITIS50118.2020.9321014.
  5. S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi, “Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data,” Expert Syst. Appl., vol. 149, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113248.
  6. S. Ahmadian, M. Afsharchi, and M. Meghdadi, “A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems,” Multimed. Tools Appl., vol. 78, no. 13, pp. 17763–17798, 2019, doi: https://doi.org/10.1007/s11042-018-7079-x.
  7. R. Logesh and V. Subramaniyaswamy, Exploring hybrid recommender systems for personalized travel applications, vol. 768. Springer Singapore, 2019, doi: https://doi.org/10.1007/978-981-13-0617-4_52.
  8. H. Q. Do, T. H. Le, and B. Yoon, “Dynamic Weighted Hybrid Recommender Systems,” Int. Conf. Adv. Commun. Technol. ICACT, vol. 2020, pp. 644–650, 2020, doi: https://doi.org/10.23919/ICACT48636.2020.9061465.
  9. M. Gupta, A. Thakkar, Aashish, V. Gupta, and D. P. S. R. Rathore, “Movie Recommender System Using Collaborative Filtering,” no. Icesc, pp. 415–420, 2020, doi: https://doi.org/10.1109/ICESC48915.2020.9155879.
  10. Y. Fu and T. Wang, “Item-based collaborative filtering with BERT,” Proc. Annu. Meet. Assoc. Comput. Linguist., vol. 2020-July, no. Ecnlp 3, pp. 54–58, 2020, doi: https://doi.org/10.18653/v1/2020.ecnlp-1.8.
  11. X. Wang, Z. Dai, H. Li, and J. Yang, “A New Collaborative Filtering Recommendation Method Based on Transductive SVM and Active Learning,” Discret. Dyn. Nat. Soc., vol. 2020, no. 1, 2020, doi: https://doi.org/10.1155/2020/6480273.
  12. S. Wan and Z. Niu, “A hybrid e-learning recommendation approach based on learners’ influence propagation,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 5, pp. 827–840, 2020, doi: https://doi.org/10.1109/TKDE.2019.2895033.
  13. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014. https://doi.org/10.48550/arXiv.1412.3555
  14. K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells,” Chaos, Solitons and Fractals, vol. 146, p. 110861, 2021, doi: https://doi.org/10.1016/j.chaos.2021.110861.
  15. D. Valcarce, A. Landin, J. Parapar, and Á. Barreiro, “Collaborative filtering embeddings for memory-based recommender systems,” Eng. Appl. Artif. Intell., vol. 85, no. May, pp. 347–356, 2019, doi: https://doi.org/10.1016/j.engappai.2019.06.020.
  16. G. R. Lima, C. E. Mello, A. Lyra, and G. Zimbrao, “Applying landmarks to enhance memory-based collaborative filtering,” Inf. Sci. (Ny)., vol. 513, pp. 412–428, 2020, doi: https://doi.org/10.1016/j.ins.2019.10.041.
  17. C. Ajaegbu, “An optimized item-based collaborative filtering algorithm,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 12, pp. 10629–10636, 2021, doi: https://doi.org/10.1007/s12652-020-02876-1.
  18. A. S. Tewari, “Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1934–1940, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.215.
  19. Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network,” Simul. Model. Pract. Theory, vol. 113, no. June, p. 102375, 2021, doi: https://doi.org/10.1016/j.simpat.2021.102375.
  20. D. Wang, Y. Liang, D. Xu, X. Feng, and R. Guan, “A content-based recommender system for computer science publications,” Knowledge-Based Syst., vol. 157, pp. 1–9, 2018, doi: https://doi.org/10.1016/j.knosys.2018.05.001.
  21. M. Abdel-Basset, M. Mohamed, M. Elhoseny, L. H. Son, F. Chiclana, and A. E. N. H. Zaied, “Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases,” Artif. Intell. Med., vol. 101, p. 101735, 2019, doi: https://doi.org/10.1016/j.artmed.2019.101735.
  22. R. H. Singh, S. Maurya, T. Tripathi, T. Narula, and G. Srivastav, “Movie Recommendation System using Cosine Similarity and KNN,” Int. J. Eng. Adv. Technol., vol. 9, no. 5, pp. 556–559, 2020, doi: https://doi.org/10.35940/ijeat.e9666.069520.
  23. R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” J. Appl. Sci. Technol. Trends, vol. 1, no. 2, pp. 56–70, 2020, doi: https://doi.org/10.38094/jastt1224.
  24. S. Hakak, M. Alazab, S. Khan, T. R. Gadekallu, P. K. R. Maddikunta, and W. Z. Khan, “An ensemble machine learning approach through effective feature extraction to classify fake news,” Futur. Gener. Comput. Syst., vol. 117, pp. 47–58, 2021, doi: https://doi.org/10.1016/j.future.2020.11.022.
  25. S. W. Kim and J. M. Gil, “Research paper classification systems based on TF-IDF and LDA schemes,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, 2019, doi: https://doi.org/10.1186/s13673-019-0192-7.
  26. J. M. Kudari, “Fake News Detection using Passive Aggressive and TF-IDF Vectorizer,” Int. Res. J. Eng. Technol., pp. 1601–1603, 2020.
  27. S. Pericherla and E. Ilavarasan, “Performance analysis of Word Embeddings for Cyberbullying Detection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1085, no. 1, p. 012008, 2021. https://doi.org/10.1088/1757-899x/1085/1/012008
  28. T. Schick and H. Schütze, “BERTRAM: Improved word embeddings have big impact on contextualized model performance,” Proc. Annu. Meet. Assoc. Comput. Linguist., pp. 3996–4007, 2020, doi: https://doi.org/10.18653/v1/2020.acl-main.368.
Read More

References


K. Sailunaz and R. Alhajj, “Emotion and sentiment analysis from Twitter text,” J. Comput. Sci., vol. 36, p. 101003, 2019, doi: https://doi.org/10.1016/j.jocs.2019.05.009.

H. Tahmasebi, R. Ravanmehr, and R. Mohamadrezaei, “Social movie recommender system based on deep autoencoder network using Twitter data,” Neural Comput. Appl., vol. 33, no. 5, pp. 1607–1623, 2021, doi: https://doi.org/10.1007/s00521-020-05085-1.

G. Geetha, M. Safa, C. Fancy, and D. Saranya, “A Hybrid Approach using Collaborative filtering and Content based Filtering for Recommender System,” J. Phys. Conf. Ser., vol. 1000, no. 1, 2018, doi: https://doi.org/10.1088/1742-6596/1000/1/012101.

N. Ifada, T. F. Rahman, and M. K. Sophan, “Comparing collaborative filtering and hybrid based approaches for movie recommendation,” Proceeding - 6th Inf. Technol. Int. Semin. ITIS 2020, pp. 219–223, 2020, doi: https://doi.org/10.1109/ITIS50118.2020.9321014.

S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi, “Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data,” Expert Syst. Appl., vol. 149, 2020, doi: https://doi.org/10.1016/j.eswa.2020.113248.

S. Ahmadian, M. Afsharchi, and M. Meghdadi, “A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems,” Multimed. Tools Appl., vol. 78, no. 13, pp. 17763–17798, 2019, doi: https://doi.org/10.1007/s11042-018-7079-x.

R. Logesh and V. Subramaniyaswamy, Exploring hybrid recommender systems for personalized travel applications, vol. 768. Springer Singapore, 2019, doi: https://doi.org/10.1007/978-981-13-0617-4_52.

H. Q. Do, T. H. Le, and B. Yoon, “Dynamic Weighted Hybrid Recommender Systems,” Int. Conf. Adv. Commun. Technol. ICACT, vol. 2020, pp. 644–650, 2020, doi: https://doi.org/10.23919/ICACT48636.2020.9061465.

M. Gupta, A. Thakkar, Aashish, V. Gupta, and D. P. S. R. Rathore, “Movie Recommender System Using Collaborative Filtering,” no. Icesc, pp. 415–420, 2020, doi: https://doi.org/10.1109/ICESC48915.2020.9155879.

Y. Fu and T. Wang, “Item-based collaborative filtering with BERT,” Proc. Annu. Meet. Assoc. Comput. Linguist., vol. 2020-July, no. Ecnlp 3, pp. 54–58, 2020, doi: https://doi.org/10.18653/v1/2020.ecnlp-1.8.

X. Wang, Z. Dai, H. Li, and J. Yang, “A New Collaborative Filtering Recommendation Method Based on Transductive SVM and Active Learning,” Discret. Dyn. Nat. Soc., vol. 2020, no. 1, 2020, doi: https://doi.org/10.1155/2020/6480273.

S. Wan and Z. Niu, “A hybrid e-learning recommendation approach based on learners’ influence propagation,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 5, pp. 827–840, 2020, doi: https://doi.org/10.1109/TKDE.2019.2895033.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014. https://doi.org/10.48550/arXiv.1412.3555

K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells,” Chaos, Solitons and Fractals, vol. 146, p. 110861, 2021, doi: https://doi.org/10.1016/j.chaos.2021.110861.

D. Valcarce, A. Landin, J. Parapar, and Á. Barreiro, “Collaborative filtering embeddings for memory-based recommender systems,” Eng. Appl. Artif. Intell., vol. 85, no. May, pp. 347–356, 2019, doi: https://doi.org/10.1016/j.engappai.2019.06.020.

G. R. Lima, C. E. Mello, A. Lyra, and G. Zimbrao, “Applying landmarks to enhance memory-based collaborative filtering,” Inf. Sci. (Ny)., vol. 513, pp. 412–428, 2020, doi: https://doi.org/10.1016/j.ins.2019.10.041.

C. Ajaegbu, “An optimized item-based collaborative filtering algorithm,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 12, pp. 10629–10636, 2021, doi: https://doi.org/10.1007/s12652-020-02876-1.

A. S. Tewari, “Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1934–1940, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.215.

Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network,” Simul. Model. Pract. Theory, vol. 113, no. June, p. 102375, 2021, doi: https://doi.org/10.1016/j.simpat.2021.102375.

D. Wang, Y. Liang, D. Xu, X. Feng, and R. Guan, “A content-based recommender system for computer science publications,” Knowledge-Based Syst., vol. 157, pp. 1–9, 2018, doi: https://doi.org/10.1016/j.knosys.2018.05.001.

M. Abdel-Basset, M. Mohamed, M. Elhoseny, L. H. Son, F. Chiclana, and A. E. N. H. Zaied, “Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases,” Artif. Intell. Med., vol. 101, p. 101735, 2019, doi: https://doi.org/10.1016/j.artmed.2019.101735.

R. H. Singh, S. Maurya, T. Tripathi, T. Narula, and G. Srivastav, “Movie Recommendation System using Cosine Similarity and KNN,” Int. J. Eng. Adv. Technol., vol. 9, no. 5, pp. 556–559, 2020, doi: https://doi.org/10.35940/ijeat.e9666.069520.

R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” J. Appl. Sci. Technol. Trends, vol. 1, no. 2, pp. 56–70, 2020, doi: https://doi.org/10.38094/jastt1224.

S. Hakak, M. Alazab, S. Khan, T. R. Gadekallu, P. K. R. Maddikunta, and W. Z. Khan, “An ensemble machine learning approach through effective feature extraction to classify fake news,” Futur. Gener. Comput. Syst., vol. 117, pp. 47–58, 2021, doi: https://doi.org/10.1016/j.future.2020.11.022.

S. W. Kim and J. M. Gil, “Research paper classification systems based on TF-IDF and LDA schemes,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, 2019, doi: https://doi.org/10.1186/s13673-019-0192-7.

J. M. Kudari, “Fake News Detection using Passive Aggressive and TF-IDF Vectorizer,” Int. Res. J. Eng. Technol., pp. 1601–1603, 2020.

S. Pericherla and E. Ilavarasan, “Performance analysis of Word Embeddings for Cyberbullying Detection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1085, no. 1, p. 012008, 2021. https://doi.org/10.1088/1757-899x/1085/1/012008

T. Schick and H. Schütze, “BERTRAM: Improved word embeddings have big impact on contextualized model performance,” Proc. Annu. Meet. Assoc. Comput. Linguist., pp. 3996–4007, 2020, doi: https://doi.org/10.18653/v1/2020.acl-main.368.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 11 Download : 11

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License