Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 2, May 2024
  4. Articles

Issue

Vol. 9, No. 2, May 2024

Issue Published : May 31, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Sensorless Field-Oriented Control (FOC) using Sliding Mode Observer for BLDC Motor

https://doi.org/10.22219/kinetik.v9i2.1937
Abdul Hafid Arif
Universitas Brawijaya
Muhammad Aziz Muslim
Universitas Brawijaya
Erni Yudaingtyas
Universitas Brawijaya

Corresponding Author(s) : Abdul Hafid Arif

hfdism@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 2, May 2024
Article Published : May 27, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Motor Brushless Direct Current (BLDC) has become the preferred choice in various engineering applications. However, BLDC motor control involves high complexity, and motor performance depends on the control algorithms used. This research discusses the use of sensorless control methods, specifically the Sliding Mode Observer (SMO) for rotor position and speed estimation in BLDC motors within the context of Field-Oriented Control (FOC), validated through simulations using Matlab/Simulink. Simulation results indicate that SMO provides rapid dynamic response to current changes, albeit with slight delays at high speeds. Rotor position estimation with SMO is also reasonably accurate in both steady-state and transient conditions, affirming the iveness of SMO in sensorless control for BLDC motors. SMO can be experimentally implemented to enhance sensorless control in BLDC motors by reducing the cost of installing Hall sensors while maintaining comparable performance.

Keywords

BLDC Motor Field-Oriented Control Sliding Mode Observer Position Estimation Motor Speed
Arif, A. H., Muslim, M. A., & Yudaingtyas, E. (2024). Sensorless Field-Oriented Control (FOC) using Sliding Mode Observer for BLDC Motor. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(2), 139-148. https://doi.org/10.22219/kinetik.v9i2.1937
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Mousmi, A., Abbou, A., & El Houm, Y. (2017, April). Trapezoidal control of Brushless DC motor based on DSP F28335. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1-5). IEEE. https://doi.org/10.1109/WITS.2017.7934602
  2. Liu, C., & Luo, Y. (2017). Overview of advanced control strategies for electric machines. Chinese Journal of Electrical Engineering, 3(2), 53-61. https://doi.org/10.23919/CJEE.2017.8048412
  3. Golesorkhie, F., Yang, F., Vlacic, L., & Tansley, G. (2020). Field-Oriented control-based reduction of the vibration and power consumption of a blood pump. Energies, 13(15), 3907. https://doi.org/10.3390/en13153907
  4. Biniakos, N., & Iakovakis, V. (2019). Sensored Field-Oriented control of BLDC motor for pico satellite attitude control. International Journal of Innovative Science and Research Technology, 4.
  5. Amalia, Z., Khabib, A., Yudaningtyas, E., Machfuroh, T., Aini, F. A. N., & Rosady, S. D. N. (2023). Field-Oriented Control untuk Pengaturan Kecepatan Motor BLDC pada Sepeda Motor Listrik. Jurnal Elektronika dan Otomasi Industri, 10(1), 1-8. https://doi.org/10.33795/elkolind.v10i1.1977
  6. Song, X., Han, B., & Wang, K. (2018). Sensorless drive of high-speed BLDC motors based on virtual third-harmonic back EMF and high-precision compensation. IEEE Transactions on Power Electronics, 34(9), 8787-8796. https://doi.org/10.1109/TPEL.2018.2885031
  7. Wu, Z., & Wang, H. (2013, October). Sensorless control of the brushless DC motors based on TMS320F2812. In 2013 International Conference on Electrical Machines and Systems (ICEMS) (pp. 1184-1188). IEEE. https://doi.org/10.11142/jicems.2014.3.1.1
  8. Zhang, H., Tu, Y., & Wang, T. (2014, October). Sensor-less control for brushless DC motors based on hybrid sliding mode observer. In 2014 7th International conference on intelligent computation technology and automation (pp. 636-639). IEEE. https://doi.org/10.1109/ICICTA.2014.158
  9. Baratieri, C. L., & Pinheiro, H. (2013, October). An IF starting method for smooth and fast transition to sensorless control of BLDC motors. In 2013 Brazilian Power Electronics Conference (pp. 836-843). IEEE. https://doi.org/10.1109/COBEP.2013.6785212
  10. Song, X., Han, B., & Wang, K. (2018). Sensorless drive of high-speed BLDC motors based on virtual third-harmonic back EMF and high-precision compensation. IEEE Transactions on Power Electronics, 34(9), 8787-8796. https://doi.org/10.1109/TPEL.2018.2885031
  11. Chen, X., & Liu, G. (2019). Sensorless optimal commutation steady speed control method for a nonideal back-EMF BLDC motor drive system including buck converter. IEEE Transactions on Industrial Electronics, 67(7), 6147-6157. https://doi.org/10.1109/TIE.2019.2945282
  12. Song, X., Han, B., Zheng, S., & Chen, S. (2017). A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range. IEEE Transactions on Power Electronics, 33(8), 7083-7093. https://doi.org/10.1109/TPEL.2017.2753289
  13. Gamazo-Real, J. C., Vázquez-Sánchez, E., & Gómez-Gil, J. (2010). Position and speed control of brushless DC motors using sensorless techniques and application trends. sensors, 10(7), 6901-6947. https://doi.org/10.3390/s100706901
  14. Ni, Y., & Shao, D. (2021, June). Research of Improved MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Considering Parameter Sensitivity. In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (Vol. 4, pp. 633-638). IEEE. https://doi.org/10.1109/IMCEC51613.2021.9482131
  15. Aishwarya, V., & Jayanand, B. (2016, March). Estimation and control of sensorless brushless dc motor drive using extended kalman filter. In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT) (pp. 1-7). IEEE. https://doi.org/10.1109/ICCPCT.2016.7530343
  16. Chen, S., Liu, G., & Zhu, L. (2018). Sensorless startup strategy for a 315-kW high-speed brushless DC motor with small inductance and nonideal back EMF. IEEE Transactions on Industrial Electronics, 66(3), 1703-1714. https://doi.org/10.1109/TIE.2018.2838083
  17. Shah, V., & Vijayakumari, A. (2018, April). Field-Oriented control of surface mount permanent magnet synchronous machine with non linear observer for continuous rotor position estimation. In 2018 3rd International Conference for Convergence in Technology (I2CT) (pp. 1-6). IEEE. https://doi.org/10.1109/I2CT.2018.8529529
  18. Girija, P. K., & Prince, A. (2014, January). Robustness evaluation of SMO in sensorless control of BLDC motor under DTC scheme. In 2014 International Conference on Power Signals Control and Computations (EPSCICON) (pp. 1-6). IEEE. https://doi.org/10.1109/EPSCICON.2014.6887511
  19. Carey, K. D., Zimmerman, N., & Ababei, C. (2019). Hybrid Field-Oriented and direct torque control for sensorless BLDC motors used in aerial drones. IET Power Electronics, 12(3), 438-449. https://doi.org/10.1049/iet-pel.2018.5231
  20. Gambhir, R., & Jha, A. K. (2013). Brushless DC motor: Construction and applications. Int. J. Eng. Sci, 2(5), 72-77.
  21. Munoz-Gomez, G., Alanis, A. Y., & Rivera, J. (2018). Nested high order sliding mode controller applied to a brushless direct current motor. IFAC-PapersOnLine, 51(13), 174-179. https://doi.org/10.1016/j.ifacol.2018.07.274
  22. Qiao, Z., Shi, T., Wang, Y., Yan, Y., Xia, C., & He, X. (2012). New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Transactions on Industrial electronics, 60(2), 710-719. https://doi.org/10.1109/TIE.2012.2206359
  23. Mehta, H., Joshi, V., & Kurulkar, P. (2016, June). Implementation issues of sliding mode observer for sensorless Field-Oriented control of PMSM using TMS320F2812. In 2016 IEEE Symposium on Sensorless Control for Electrical Drives (SLED) (pp. 1-6). IEEE. https://doi.org/10.1109/SLED.2016.7518798
  24. Sharifian, M. B. B., Herizchi, T., & Firouzjah, K. G. (2009, October). Field-Oriented control of permanent magnet synchronous motor using predictive space vector modulation. In 2009 IEEE Symposium on Industrial Electronics & Applications (Vol. 2, pp. 574-579). IEEE.
  25. Fakham, H., Djemaï, M., & Busawon, K. (2008). Design and practical implementation of a back-EMF sliding-mode observer for a brushless DC motor. IET Electric Power Applications, 2(6), 353-361. https://doi.org/10.1049/iet-epa:20070242
Read More

References


Mousmi, A., Abbou, A., & El Houm, Y. (2017, April). Trapezoidal control of Brushless DC motor based on DSP F28335. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1-5). IEEE. https://doi.org/10.1109/WITS.2017.7934602

Liu, C., & Luo, Y. (2017). Overview of advanced control strategies for electric machines. Chinese Journal of Electrical Engineering, 3(2), 53-61. https://doi.org/10.23919/CJEE.2017.8048412

Golesorkhie, F., Yang, F., Vlacic, L., & Tansley, G. (2020). Field-Oriented control-based reduction of the vibration and power consumption of a blood pump. Energies, 13(15), 3907. https://doi.org/10.3390/en13153907

Biniakos, N., & Iakovakis, V. (2019). Sensored Field-Oriented control of BLDC motor for pico satellite attitude control. International Journal of Innovative Science and Research Technology, 4.

Amalia, Z., Khabib, A., Yudaningtyas, E., Machfuroh, T., Aini, F. A. N., & Rosady, S. D. N. (2023). Field-Oriented Control untuk Pengaturan Kecepatan Motor BLDC pada Sepeda Motor Listrik. Jurnal Elektronika dan Otomasi Industri, 10(1), 1-8. https://doi.org/10.33795/elkolind.v10i1.1977

Song, X., Han, B., & Wang, K. (2018). Sensorless drive of high-speed BLDC motors based on virtual third-harmonic back EMF and high-precision compensation. IEEE Transactions on Power Electronics, 34(9), 8787-8796. https://doi.org/10.1109/TPEL.2018.2885031

Wu, Z., & Wang, H. (2013, October). Sensorless control of the brushless DC motors based on TMS320F2812. In 2013 International Conference on Electrical Machines and Systems (ICEMS) (pp. 1184-1188). IEEE. https://doi.org/10.11142/jicems.2014.3.1.1

Zhang, H., Tu, Y., & Wang, T. (2014, October). Sensor-less control for brushless DC motors based on hybrid sliding mode observer. In 2014 7th International conference on intelligent computation technology and automation (pp. 636-639). IEEE. https://doi.org/10.1109/ICICTA.2014.158

Baratieri, C. L., & Pinheiro, H. (2013, October). An IF starting method for smooth and fast transition to sensorless control of BLDC motors. In 2013 Brazilian Power Electronics Conference (pp. 836-843). IEEE. https://doi.org/10.1109/COBEP.2013.6785212

Song, X., Han, B., & Wang, K. (2018). Sensorless drive of high-speed BLDC motors based on virtual third-harmonic back EMF and high-precision compensation. IEEE Transactions on Power Electronics, 34(9), 8787-8796. https://doi.org/10.1109/TPEL.2018.2885031

Chen, X., & Liu, G. (2019). Sensorless optimal commutation steady speed control method for a nonideal back-EMF BLDC motor drive system including buck converter. IEEE Transactions on Industrial Electronics, 67(7), 6147-6157. https://doi.org/10.1109/TIE.2019.2945282

Song, X., Han, B., Zheng, S., & Chen, S. (2017). A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range. IEEE Transactions on Power Electronics, 33(8), 7083-7093. https://doi.org/10.1109/TPEL.2017.2753289

Gamazo-Real, J. C., Vázquez-Sánchez, E., & Gómez-Gil, J. (2010). Position and speed control of brushless DC motors using sensorless techniques and application trends. sensors, 10(7), 6901-6947. https://doi.org/10.3390/s100706901

Ni, Y., & Shao, D. (2021, June). Research of Improved MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Considering Parameter Sensitivity. In 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (Vol. 4, pp. 633-638). IEEE. https://doi.org/10.1109/IMCEC51613.2021.9482131

Aishwarya, V., & Jayanand, B. (2016, March). Estimation and control of sensorless brushless dc motor drive using extended kalman filter. In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT) (pp. 1-7). IEEE. https://doi.org/10.1109/ICCPCT.2016.7530343

Chen, S., Liu, G., & Zhu, L. (2018). Sensorless startup strategy for a 315-kW high-speed brushless DC motor with small inductance and nonideal back EMF. IEEE Transactions on Industrial Electronics, 66(3), 1703-1714. https://doi.org/10.1109/TIE.2018.2838083

Shah, V., & Vijayakumari, A. (2018, April). Field-Oriented control of surface mount permanent magnet synchronous machine with non linear observer for continuous rotor position estimation. In 2018 3rd International Conference for Convergence in Technology (I2CT) (pp. 1-6). IEEE. https://doi.org/10.1109/I2CT.2018.8529529

Girija, P. K., & Prince, A. (2014, January). Robustness evaluation of SMO in sensorless control of BLDC motor under DTC scheme. In 2014 International Conference on Power Signals Control and Computations (EPSCICON) (pp. 1-6). IEEE. https://doi.org/10.1109/EPSCICON.2014.6887511

Carey, K. D., Zimmerman, N., & Ababei, C. (2019). Hybrid Field-Oriented and direct torque control for sensorless BLDC motors used in aerial drones. IET Power Electronics, 12(3), 438-449. https://doi.org/10.1049/iet-pel.2018.5231

Gambhir, R., & Jha, A. K. (2013). Brushless DC motor: Construction and applications. Int. J. Eng. Sci, 2(5), 72-77.

Munoz-Gomez, G., Alanis, A. Y., & Rivera, J. (2018). Nested high order sliding mode controller applied to a brushless direct current motor. IFAC-PapersOnLine, 51(13), 174-179. https://doi.org/10.1016/j.ifacol.2018.07.274

Qiao, Z., Shi, T., Wang, Y., Yan, Y., Xia, C., & He, X. (2012). New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Transactions on Industrial electronics, 60(2), 710-719. https://doi.org/10.1109/TIE.2012.2206359

Mehta, H., Joshi, V., & Kurulkar, P. (2016, June). Implementation issues of sliding mode observer for sensorless Field-Oriented control of PMSM using TMS320F2812. In 2016 IEEE Symposium on Sensorless Control for Electrical Drives (SLED) (pp. 1-6). IEEE. https://doi.org/10.1109/SLED.2016.7518798

Sharifian, M. B. B., Herizchi, T., & Firouzjah, K. G. (2009, October). Field-Oriented control of permanent magnet synchronous motor using predictive space vector modulation. In 2009 IEEE Symposium on Industrial Electronics & Applications (Vol. 2, pp. 574-579). IEEE.

Fakham, H., Djemaï, M., & Busawon, K. (2008). Design and practical implementation of a back-EMF sliding-mode observer for a brushless DC motor. IET Electric Power Applications, 2(6), 353-361. https://doi.org/10.1049/iet-epa:20070242

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 21 Download : 13

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License