Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 9, No. 3, August 2024
  4. Articles

Issue

Vol. 9, No. 3, August 2024

Issue Published : Aug 31, 2024
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Spatial Interpolation Long-Term Patterns Capacity of Solar Energy in Sumatera

https://doi.org/10.22219/kinetik.v9i3.1929
Arie Vatresia
Universitas Bengkulu
http://orcid.org/0000-0001-9789-3498
Ferzha Putra Utama
Universitas Bengkulu
Novalio Daratha
Universitas Bengkulu
Etika Dwi Lestari
Wildlife Conservation Society

Corresponding Author(s) : Arie Vatresia

arie.vatresia@unib.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 9, No. 3, August 2024
Article Published : Aug 30, 2024

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Indonesia possesses considerable capacity for renewable energy as a result of its plentiful natural resources, including geothermal, solar, wind, hydro, and biomass. However, the nation's existing energy composition is predominantly dependent on non-renewable resources, with fossil fuels constituting approximately 95% of its overall energy consumption. Recently, Indonesia has made notable advancements in augmenting its renewable energy output in years. Nevertheless, there is still obscurity about the identification of suitable regions for the installation of solar power plants in order to facilitate the development of solar energy. This study employed a methodology to investigate and forecast the solar energy potential in Sumatra, Indonesia. The data utilized consists of MERRA-2 reanalyzing information spanning from 1980 to 2019, collected on a daily basis. The data is analyzed and shown using Inverse Distance Weighting and ARIMA techniques to visualize the spatial variation of solar energy potential in Sumatra. ARIMA is employed as a supplementary method to the interpolation technique in order to get long-term projections of solar energy potential for the period spanning from 2020 to 2029. The analysis of the best interpolation method for estimating solar energy potential reveals that the IDW approach with a power of 5 yields the most accurate findings, with an RMSE value of 28.33. For long-term prediction of solar potential in Aceh province, the ARIMA (1,0,0) method is recommended, which has a MAPE value of 0.0219. The findings indicated that Lampung and Bengkulu frequently experience the distribution of solar energy with an intensity ranging from 1400 to 1450 kWh. In addition, the forecast of the potential over Sumatera Island yielded encouraging results using the GAM model, with a root mean square error rate of 0.05103.

Keywords

Arima Sumatera Indonesia Renewable Energy
Vatresia, A., Utama, F. P., Daratha, N., & Lestari, E. D. (2024). Spatial Interpolation Long-Term Patterns Capacity of Solar Energy in Sumatera. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 9(3), 231-238. https://doi.org/10.22219/kinetik.v9i3.1929
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s vast solar energy potential,” Energies (Basel), vol. 14, no. 17, 2021. https://doi.org/10.3390/en14175424
  2. D. Hartono, S. H. Hastuti, A. Halimatussadiah, A. Saraswati, A. F. Mita, and V. Indriani, “Comparing the impacts of fossil and renewable energy investments in Indonesia: A simple general equilibrium analysis,” Heliyon, vol. 6, no. 6, 2020. https://doi.org/10.1016/j.heliyon.2020.e04120
  3. J. Langer, J. Quist, and K. Blok, “Review of renewable energy potentials in indonesia and their contribution to a 100% renewable electricity system,” Energies, vol. 14, no. 21. 2021. https://doi.org/10.3390/en14217033
  4. M. I. al Irsyad, A. Halog, R. Nepal, and D. P. Koesrindartoto, “The Impacts of Emission Reduction Targets in Indonesia Electricity Systems,” Indonesian Journal of Energy, vol. 2, no. 2, 2019. https://doi.org/10.33116/ije.v2i2.42
  5. S. Suhono, S. Sarjiya, and S. P. Hadi, “Electricity Demand and Supply Planning Analysis for Sumatera Interconnection System using Integrated Resources Planning Approach,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 5, no. 1, 2019. http://dx.doi.org/10.26555/jiteki.v5i1.13178
  6. Y. Sugiawan and S. Managi, “The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy,” Energy Policy, vol. 98, 2016. https://doi.org/10.1016/j.enpol.2016.08.029
  7. A. Hidayatno, R. Dhamayanti, and A. R. Destyanto, “Model conceptualization for policy analysis in renewable energy development in Indonesia by using system dynamics,” International Journal of Smart Grid and Clean Energy, vol. 8, no. 1, 2019. https://doi.org/10.12720/sgce.8.1.54-58
  8. A. S. Ahmar, “A comparison of α-Sutte Indicator and ARIMA methods in renewable energy forecasting in Indonesia,” International Journal of Engineering and Technology(UAE), vol. 7, 2018. https://doi.org/10.14419/ijet.v7i1.6.12319
  9. M. Anggraini and S. N. Indah, “IESR Efforts to Accelerate Indonesia Renewable Energy Transition Through Media Relations,” RSF Conference Series: Business, Management and Social Sciences, vol. 1, no. 4, 2021. https://doi.org/10.31098/bmss.v1i4.314
  10. D. Akritidis, A. Pozzer, J. Flemming, A. Inness, and P. Zanis, “A Global Climatology of Tropopause Folds in CAMS and MERRA-2 Reanalyses,” Journal of Geophysical Research: Atmospheres, vol. 126, no. 8, 2021. https://doi.org/10.1029/2020JD034115
  11. H. Kuswanto and A. Naufal, “Evaluation of performance of drought prediction in Indonesia based on TRMM and MERRA-2 using machine learning methods,” MethodsX, vol. 6, 2019. https://doi.org/10.1016/j.mex.2019.05.029
  12. G. Y. Lu and D. W. Wong, “An adaptive inverse-distance weighting spatial interpolation technique,” Comput Geosci, vol. 34, no. 9, 2008. https://doi.org/10.1016/j.cageo.2007.07.010
  13. Z. K. Barsi, I. L�szl�, G. Szab�, and H. M. Abdulmutalib, “Accuracy dimensions in remote sensing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,” vol. 42, no. 3, pp. 61–67, 2018. https://doi.org/10.5194/isprs-archives-XLII-3-61-2018
  14. S. Shekhar, M. R. Evans, J. M. Kang, and P. Mohan, “Identifying patterns in spatial information: A survey of methods,” Wiley Interdiscip Rev Data Min Knowl Discov, vol. 1, no. 3, pp. 193–214, 2011. https://doi.org/10.1002/widm.25
  15. A. Bemporad, “Global optimization via inverse distance weighting and radial basis functions,” Comput Optim Appl, vol. 77, no. 2, 2020. https://doi.org/10.1007/s10589-020-00215-w
  16. Z. Li, X. Zhang, R. Zhu, Z. Zhang, and Z. Weng, “Integrating data-to-data correlation into inverse distance weighting,” Comput Geosci, vol. 24, no. 1, 2020. https://doi.org/10.1007/s10596-019-09913-9
  17. J. Tan et al., “Coupling random forest and inverse distance weighting to generate climate surfaces of precipitation and temperature with Multiple-Covariates,” J Hydrol (Amst), vol. 598, 2021. https://doi.org/10.1016/j.jhydrol.2021.126270
  18. R. Varatharajan, G. Manogaran, M. K. Priyan, V. E. Balaş, and C. Barna, “Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis,” Multimed Tools Appl, vol. 77, no. 14, 2018. https://doi.org/10.1007/s11042-017-4768-9
  19. D. F. Watson and G. M. Philip, “A Refinement of Inverse Distance Weighted Interpolation,” Geoprocessing, vol. 2, no. 4, pp. 315–327, 1985.
  20. J. P. Musashi, H. Pramoedyo, and R. Fitriani, “Comparison of Inverse Distance Weighted and Natural Neighbor Interpolation Method at Air Temperature Data in Malang Region,” CAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI, vol. 5, no. 2, pp. 48–54, 2018.
  21. J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, and A. Lachhab, “Forecasting of demand using ARIMA model,” International Journal of Engineering Business Management, vol. 10, 2018. https://doi.org/10.1177/1847979018808673
  22. G. C. Tiao, “Time Series: ARIMA Methods,” in International Encyclopedia of the Social & Behavioral Sciences: Second Edition, 2015. https://doi.org/10.1016/B978-0-08-097086-8.42182-3
  23. P. G. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, 2003. https://doi.org/10.1016/S0925-2312(01)00702-0
  24. E. Chodakowska, J. Nazarko, and Ł. Nazarko, “Arima models in electrical load forecasting and their robustness to noise,” Energies (Basel), vol. 14, no. 23, 2021. https://doi.org/10.3390/en14237952
  25. C. H. Chang, S. Tan, B. Lengerich, A. Goldenberg, and R. Caruana, “How Interpretable and Trustworthy are GAMs?,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021. https://doi.org/10.1145/3447548.3467453
  26. S. N. Wood, “Mixed GAM Computation Vehicle with Automatic Smoothness Estimation,” Generalized Additive Models: An Introduction with R, Second Edition, vol. 1.8-33, 2020.
  27. S. N. Wood, “mgcv: GAMs and generalized ridge regression for R,” R News, vol. 1, 2001.
  28. P. J. Mavares Ferrer, “Visualization of the Chaos Game for non-hyperbolic iterated function system,” REVISTA ODIGOS, vol. 1, no. 2, pp. 9–20, 2020. https://doi.org/10.35290/ro.v1n2.2020.302
  29. D. Bera, N. Das Chatterjee, and S. Bera, “Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal, Remote Sensing Applications: Society and Environment,” vol. 22, p. 100502, Dec. 2021. https://doi.org/10.1016/j.rsase.2021.100502
  30. E. J. Pedersen, D. L. Miller, G. L. Simpson, and N. Ross, “Hierarchical generalized additive models in ecology: An introduction with mgcv, PeerJ,” vol. 2019, no. 5, pp. 1–42, 2019. https://doi.org/10.7717/peerj.6876
  31. A. Deniz and Y. Özdemir, “Graph-directed fractal interpolation functions,” Turkish Journal of Mathematics, vol. 41, no. 4, 2017. https://doi.org/10.3906/mat-1604-39
  32. V. Chaplot, F. Darboux, H. Bourennane, S. Leguédois, N. Silvera, and K. Phachomphon, “Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density,” Geomorphology, vol. 77, pp. 126–141, 2006. https://doi.org/10.1016/j.geomorph.2005.12.010
  33. G. Gertner, G. Wang, S. Fang, and A. B. Anderson, “Mapping and uncertainty of predictions based on multiple primary variables from joint co-simulation with Landsat TM image and polynomial regression,” Remote Sens Environ, vol. 83, no. 3, pp. 498–510, 2002. https://doi.org/10.1016/S0034-4257(02)00066-4
  34. A. Terlizzi, D. Scuderi, S. Fraschetti, and M. J. Anderson, “Quantifying effects of pollution on biodiversity: A case study of highly diverse molluscan assemblages in the Mediterranean,” Mar Biol, vol. 148, no. 2, pp. 293–305, 2005. https://doi.org/10.1007/s00227-005-0080-8
  35. H. Y. Wang, S. Z. Yang, and X. J. Li, “Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems,” Computers and Mathematics with Applications, vol. 56, no. 7, 2008. https://doi.org/10.1016/j.camwa.2008.03.026
  36. C. C. Nwokike and E. W. Okereke, “Comparison of the Performance of the SANN, SARIMA and ARIMA Models for Forecasting Quarterly GDP of Nigeria,” Asian Research Journal of Mathematics, 2021. https://doi.org/10.9734/arjom/2021/v17i330280
Read More

References


D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s vast solar energy potential,” Energies (Basel), vol. 14, no. 17, 2021. https://doi.org/10.3390/en14175424

D. Hartono, S. H. Hastuti, A. Halimatussadiah, A. Saraswati, A. F. Mita, and V. Indriani, “Comparing the impacts of fossil and renewable energy investments in Indonesia: A simple general equilibrium analysis,” Heliyon, vol. 6, no. 6, 2020. https://doi.org/10.1016/j.heliyon.2020.e04120

J. Langer, J. Quist, and K. Blok, “Review of renewable energy potentials in indonesia and their contribution to a 100% renewable electricity system,” Energies, vol. 14, no. 21. 2021. https://doi.org/10.3390/en14217033

M. I. al Irsyad, A. Halog, R. Nepal, and D. P. Koesrindartoto, “The Impacts of Emission Reduction Targets in Indonesia Electricity Systems,” Indonesian Journal of Energy, vol. 2, no. 2, 2019. https://doi.org/10.33116/ije.v2i2.42

S. Suhono, S. Sarjiya, and S. P. Hadi, “Electricity Demand and Supply Planning Analysis for Sumatera Interconnection System using Integrated Resources Planning Approach,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 5, no. 1, 2019. http://dx.doi.org/10.26555/jiteki.v5i1.13178

Y. Sugiawan and S. Managi, “The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy,” Energy Policy, vol. 98, 2016. https://doi.org/10.1016/j.enpol.2016.08.029

A. Hidayatno, R. Dhamayanti, and A. R. Destyanto, “Model conceptualization for policy analysis in renewable energy development in Indonesia by using system dynamics,” International Journal of Smart Grid and Clean Energy, vol. 8, no. 1, 2019. https://doi.org/10.12720/sgce.8.1.54-58

A. S. Ahmar, “A comparison of α-Sutte Indicator and ARIMA methods in renewable energy forecasting in Indonesia,” International Journal of Engineering and Technology(UAE), vol. 7, 2018. https://doi.org/10.14419/ijet.v7i1.6.12319

M. Anggraini and S. N. Indah, “IESR Efforts to Accelerate Indonesia Renewable Energy Transition Through Media Relations,” RSF Conference Series: Business, Management and Social Sciences, vol. 1, no. 4, 2021. https://doi.org/10.31098/bmss.v1i4.314

D. Akritidis, A. Pozzer, J. Flemming, A. Inness, and P. Zanis, “A Global Climatology of Tropopause Folds in CAMS and MERRA-2 Reanalyses,” Journal of Geophysical Research: Atmospheres, vol. 126, no. 8, 2021. https://doi.org/10.1029/2020JD034115

H. Kuswanto and A. Naufal, “Evaluation of performance of drought prediction in Indonesia based on TRMM and MERRA-2 using machine learning methods,” MethodsX, vol. 6, 2019. https://doi.org/10.1016/j.mex.2019.05.029

G. Y. Lu and D. W. Wong, “An adaptive inverse-distance weighting spatial interpolation technique,” Comput Geosci, vol. 34, no. 9, 2008. https://doi.org/10.1016/j.cageo.2007.07.010

Z. K. Barsi, I. L�szl�, G. Szab�, and H. M. Abdulmutalib, “Accuracy dimensions in remote sensing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,” vol. 42, no. 3, pp. 61–67, 2018. https://doi.org/10.5194/isprs-archives-XLII-3-61-2018

S. Shekhar, M. R. Evans, J. M. Kang, and P. Mohan, “Identifying patterns in spatial information: A survey of methods,” Wiley Interdiscip Rev Data Min Knowl Discov, vol. 1, no. 3, pp. 193–214, 2011. https://doi.org/10.1002/widm.25

A. Bemporad, “Global optimization via inverse distance weighting and radial basis functions,” Comput Optim Appl, vol. 77, no. 2, 2020. https://doi.org/10.1007/s10589-020-00215-w

Z. Li, X. Zhang, R. Zhu, Z. Zhang, and Z. Weng, “Integrating data-to-data correlation into inverse distance weighting,” Comput Geosci, vol. 24, no. 1, 2020. https://doi.org/10.1007/s10596-019-09913-9

J. Tan et al., “Coupling random forest and inverse distance weighting to generate climate surfaces of precipitation and temperature with Multiple-Covariates,” J Hydrol (Amst), vol. 598, 2021. https://doi.org/10.1016/j.jhydrol.2021.126270

R. Varatharajan, G. Manogaran, M. K. Priyan, V. E. Balaş, and C. Barna, “Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis,” Multimed Tools Appl, vol. 77, no. 14, 2018. https://doi.org/10.1007/s11042-017-4768-9

D. F. Watson and G. M. Philip, “A Refinement of Inverse Distance Weighted Interpolation,” Geoprocessing, vol. 2, no. 4, pp. 315–327, 1985.

J. P. Musashi, H. Pramoedyo, and R. Fitriani, “Comparison of Inverse Distance Weighted and Natural Neighbor Interpolation Method at Air Temperature Data in Malang Region,” CAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI, vol. 5, no. 2, pp. 48–54, 2018.

J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, and A. Lachhab, “Forecasting of demand using ARIMA model,” International Journal of Engineering Business Management, vol. 10, 2018. https://doi.org/10.1177/1847979018808673

G. C. Tiao, “Time Series: ARIMA Methods,” in International Encyclopedia of the Social & Behavioral Sciences: Second Edition, 2015. https://doi.org/10.1016/B978-0-08-097086-8.42182-3

P. G. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, 2003. https://doi.org/10.1016/S0925-2312(01)00702-0

E. Chodakowska, J. Nazarko, and Ł. Nazarko, “Arima models in electrical load forecasting and their robustness to noise,” Energies (Basel), vol. 14, no. 23, 2021. https://doi.org/10.3390/en14237952

C. H. Chang, S. Tan, B. Lengerich, A. Goldenberg, and R. Caruana, “How Interpretable and Trustworthy are GAMs?,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021. https://doi.org/10.1145/3447548.3467453

S. N. Wood, “Mixed GAM Computation Vehicle with Automatic Smoothness Estimation,” Generalized Additive Models: An Introduction with R, Second Edition, vol. 1.8-33, 2020.

S. N. Wood, “mgcv: GAMs and generalized ridge regression for R,” R News, vol. 1, 2001.

P. J. Mavares Ferrer, “Visualization of the Chaos Game for non-hyperbolic iterated function system,” REVISTA ODIGOS, vol. 1, no. 2, pp. 9–20, 2020. https://doi.org/10.35290/ro.v1n2.2020.302

D. Bera, N. Das Chatterjee, and S. Bera, “Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal, Remote Sensing Applications: Society and Environment,” vol. 22, p. 100502, Dec. 2021. https://doi.org/10.1016/j.rsase.2021.100502

E. J. Pedersen, D. L. Miller, G. L. Simpson, and N. Ross, “Hierarchical generalized additive models in ecology: An introduction with mgcv, PeerJ,” vol. 2019, no. 5, pp. 1–42, 2019. https://doi.org/10.7717/peerj.6876

A. Deniz and Y. Özdemir, “Graph-directed fractal interpolation functions,” Turkish Journal of Mathematics, vol. 41, no. 4, 2017. https://doi.org/10.3906/mat-1604-39

V. Chaplot, F. Darboux, H. Bourennane, S. Leguédois, N. Silvera, and K. Phachomphon, “Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density,” Geomorphology, vol. 77, pp. 126–141, 2006. https://doi.org/10.1016/j.geomorph.2005.12.010

G. Gertner, G. Wang, S. Fang, and A. B. Anderson, “Mapping and uncertainty of predictions based on multiple primary variables from joint co-simulation with Landsat TM image and polynomial regression,” Remote Sens Environ, vol. 83, no. 3, pp. 498–510, 2002. https://doi.org/10.1016/S0034-4257(02)00066-4

A. Terlizzi, D. Scuderi, S. Fraschetti, and M. J. Anderson, “Quantifying effects of pollution on biodiversity: A case study of highly diverse molluscan assemblages in the Mediterranean,” Mar Biol, vol. 148, no. 2, pp. 293–305, 2005. https://doi.org/10.1007/s00227-005-0080-8

H. Y. Wang, S. Z. Yang, and X. J. Li, “Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems,” Computers and Mathematics with Applications, vol. 56, no. 7, 2008. https://doi.org/10.1016/j.camwa.2008.03.026

C. C. Nwokike and E. W. Okereke, “Comparison of the Performance of the SANN, SARIMA and ARIMA Models for Forecasting Quarterly GDP of Nigeria,” Asian Research Journal of Mathematics, 2021. https://doi.org/10.9734/arjom/2021/v17i330280

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 11 Download : 0

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License