Analisis Tema Skripsi Mahasiswa Menggunakan Document Clustering Dengan Algoritma LINGO
Corresponding Author(s) : Dyah Mustikasari
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol 2, No 2, May-2017
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hearst, “What is text mining?,” Japan Advanced Institute of Science and Technology, pp. 1–3, 2003.
- M. W. Kogan, Jacob; Berry, Text Mining Applications and Theory, 1st ed. West Sussex: John Wiley & Sons, Ltd, 2010.
- K. Sridevi, R. Umarani, and V. Selvi, “An Analysis of Web Document Clustering Algorithms,” vol. 1, no. 6, 2011.
- O. E. Zamir, “Clustering Web Documents : A Phrase-Based Method for Grouping Search Engine Results,” University of Washington, 1999.
- S. Osi and D. Weiss, “A Concept-Driven Algorithm for Results,” IEEE Intell. Syst., pp. 48–54, 2005.
- S. Osi, “Conceptual Clustering Using Lingo Algorithm : Evaluation on Open Directory Project Data.”
- D. Osinski, Stanislaw; Stefanowski, Jerzy ; Weiss, “Lingo : Search Results Clustering Algorithm Based on Singular Value Decomposition,” Poznan, 2005.
- X. Lin, Q. Zhang, and G. Wei, “The Clustering Algorithm for Chinese Texts Based on Lingo,” in Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, pp. 1187–1190.
- S. R. Vispute and P. M. A. Potey, “Automatic Text Categorization of Marathi Documents Using Clustering Technique,” 2013.
- S. Kanthekar, A. Kadam, C. Kunte, and P. Kadam, “Generation,” in International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), 2014, pp. 294–299.
- F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” Universiteit van Amsterdam.
- S. Osinski, “An algorithm for clustering of Web Search Results,” Poznan University of Technology, 2003.
- J. Stefanowski and D. Weiss, “Carrot 2 and language properties in web search results clustering,” Adv. Web Intell., vol. 1, pp. 955–955, 2003.
References
M. Hearst, “What is text mining?,” Japan Advanced Institute of Science and Technology, pp. 1–3, 2003.
M. W. Kogan, Jacob; Berry, Text Mining Applications and Theory, 1st ed. West Sussex: John Wiley & Sons, Ltd, 2010.
K. Sridevi, R. Umarani, and V. Selvi, “An Analysis of Web Document Clustering Algorithms,” vol. 1, no. 6, 2011.
O. E. Zamir, “Clustering Web Documents : A Phrase-Based Method for Grouping Search Engine Results,” University of Washington, 1999.
S. Osi and D. Weiss, “A Concept-Driven Algorithm for Results,” IEEE Intell. Syst., pp. 48–54, 2005.
S. Osi, “Conceptual Clustering Using Lingo Algorithm : Evaluation on Open Directory Project Data.”
D. Osinski, Stanislaw; Stefanowski, Jerzy ; Weiss, “Lingo : Search Results Clustering Algorithm Based on Singular Value Decomposition,” Poznan, 2005.
X. Lin, Q. Zhang, and G. Wei, “The Clustering Algorithm for Chinese Texts Based on Lingo,” in Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, pp. 1187–1190.
S. R. Vispute and P. M. A. Potey, “Automatic Text Categorization of Marathi Documents Using Clustering Technique,” 2013.
S. Kanthekar, A. Kadam, C. Kunte, and P. Kadam, “Generation,” in International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), 2014, pp. 294–299.
F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” Universiteit van Amsterdam.
S. Osinski, “An algorithm for clustering of Web Search Results,” Poznan University of Technology, 2003.
J. Stefanowski and D. Weiss, “Carrot 2 and language properties in web search results clustering,” Adv. Web Intell., vol. 1, pp. 955–955, 2003.