Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 4, November 2023
  4. Articles

Issue

Vol. 8, No. 4, November 2023

Issue Published : Nov 30, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Improving the Major Recommendation Systems: Analysis of Hybrid Naïve Bayes-based Collaborative Filtering and Fuzzy Logic

https://doi.org/10.22219/kinetik.v8i4`.1797
Amir Saleh
Universitas Prima Indonesia
Boy Arnol Sitompul
Universitas Prima Indonesia
Laksana Febri Wijaya Laia
Universitas Prima Indonesia
Nicholas Ferdinan Sinaga
Universitas Prima Indonesia

Corresponding Author(s) : Amir Saleh

amirsalehnst1990@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 4, November 2023
Article Published : Nov 30, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Major recommendation systems have been widely used to assist prospective students in choosing major that matches their interests and potential. In an effort to improve the performance of the recommendation system, this study proposed to use collaborative filtering techniques with naïve Bayes approach. In addition, this study improved the input parameters using fuzzy logic in determining the recommended majors. The methodology used started from collecting user data, including gender, academic history, interests, and other relevant attributes. The data were used to train the naïve Bayes technique by estimating the probability of feature conformity between users and students in the recommended majors. However, there were problems such as uncertainty and ambiguity in user preferences for input data. The fuzzy logic method aimed to improve the input parameters to more accurately reflect the user preferences. The results of improving the input parameters by using fuzzy logic were then used in the naïve Bayes technique to obtain recommendations for the direction that best suits the user’s preferences. The final stage of this study used evaluation metrics such as precision, recall, and f1-score to measure the performance of the recommendation system in providing accurate recommendations. The use of a hybrid of naïve Bayes and fuzzy logic algorithms obtains an accuracy value of 87.27%, a precision value of 87.33%, a recall value of 87.24%, and an f1-score value of 87.26%. These results are higher than the usual naïve Bayes model applied in major recommendation systems.

Keywords

Major recommendation systems Collaborative filtering Naïve Bayes Fuzzy logic Hybrid
Amir Saleh, Sitompul, B. A. ., Wijaya Laia, L. F. ., & Sinaga, N. F. . (2023). Improving the Major Recommendation Systems: Analysis of Hybrid Naïve Bayes-based Collaborative Filtering and Fuzzy Logic. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(4`). https://doi.org/10.22219/kinetik.v8i4`.1797
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. R. Yu, Z. A. Pardos, H. Chau, and P. Brusilovsky, “Orienting Students to Course Recommendations Using Three Types of Explanation,” Adjun. Proc. 29th ACM Conf. User Model. Adapt. Pers., no. June 2021, pp. 238–245, 2021. https://doi.org/10.1145/3450614.3464483
  2. D. P. Kusumaningrum, N. A. Setiyanto, E. Y. Hidayat, and K. Hastuti, “Recommendation System for Major University Determination Based on Student’s Profile and Interest,” J. Appl. Intell. Syst., vol. 2, no. 1, pp. 21–28, 2017. https://doi.org/10.33633/jais.v2i1.1389
  3. N. Rachburee, P. Sunantapot, D. Ounjit, P. Panklom, P. Porking, and W. Punlumjeak, “A Major Recommendation System in Educational Mining,” 2021 1st Int. Conf. Cyber Manag. Eng., pp. 1–5, 2021. https://doi.org/10.1109/CyMaEn50288.2021.9497279
  4. D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J. Big Data, vol. 9, no. 1, 2022. https://doi.org/10.1186/s40537-022-00592-5
  5. N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, “Research problems in recommender systems,” J. Phys. Conf. Ser., vol. 1717, no. 1, 2021. https://doi.org/10.1088/1742-6596/1717/1/012002
  6. J. Feigl and M. Bogdan, “Collaborative filtering with neural networks,” in The European Symposium on Artificial Neural Networks, 2017.
  7. P. Valdiviezo-Diaz, F. Ortega, E. Cobos, and R. Lara-Cabrera, “A Collaborative Filtering Approach Based on Naïve Bayes Classifier,” IEEE Access, vol. 7, pp. 108581–108592, 2019. https://doi.org/10.1109/ACCESS.2019.2933048
  8. A. Saleh, N. Dharshinni, D. Perangin-Angin, F. Azmi, and M. I. Sarif, “Implementation of Recommendation Systems in Determining Learning Strategies Using the Naïve Bayes Classifier Algorithm,” Sinkron, vol. 8, no. 1, pp. 256–267, 2023. https://doi.org/10.33395/sinkron.v8i1.11954
  9. L. Shu-xian and F. Sen, “Design and Implementation of Movie Recommendation System Based on Naive Bayes,” J. Phys. Conf. Ser., vol. 1345, 2019. https://doi.org/10.1088/1742-6596/1345/4/042042
  10. M. S. Ozcan and T. Temel, “NEW RECOMMENDER SYSTEM USING NAIVE BAYES FOR E-LEARNING,” 2016.
  11. K. Rrmoku, B. Selimi, and L. Ahmedi, “Application of Trust in Recommender Systems—Utilizing Naive Bayes Classifier,” Computation, vol. 10, no. 1, 2022. https://doi.org/10.3390/computation10010006
  12. N. Pahuja, S. Chaudhari, and P. Raundale, “A Review On Recent Approaches to Recommendation System Model Using Distinct Product Features,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol., vol. 1, pp. 764–767, 2019, doi: 10.1109/ICICICT46008.2019.8993399.
  13. T. T. S. Nguyen, “Model-Based Book Recommender Systems using Naïve Bayes enhanced with Optimal Feature Selection,” Proc. 2019 8th Int. Conf. Softw. Comput. Appl., 2019, doi: https://dl.acm.org/doi/10.1145/3316615.3316727.
  14. Z. Putri, Sugiyarto, and Salafudin, “Sentiment Analysis using Fuzzy Naïve Bayes Classifier on Covid-19,” Desimal J. Mat., vol. 4, no. 1, pp. 13–20, 2021. http://dx.doi.org/10.24042/djm.v4i2.7390
  15. L. P. Wanti and O. Somantri, “Comparing Fuzzy Logic Mamdani and Naïve Bayes for Dental Disease Detection,” J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 2, pp. 182–195, 2022. http://dx.doi.org/10.20473/jisebi.8.2.182-195
  16. A. Papa, Y. Shemet, and A. Yarovyi, “Analysis of fuzzy logic methods for forecasting customer churn,” Technol. Audit Prod. Reserv., vol. 1, no. 2(57), pp. 12–14, 2021. https://dx.doi.org/10.15587/2706-5448.2021.225285
  17. H. Li, K. Yu, C. Lien, C. Lin, and C. Yu, “Improving Aquaculture Water Quality Using Dual-Input Fuzzy Logic Control for Ammonia Nitrogen Management,” J. Mar. Sci. Eng. Artic., 2023. https://doi.org/10.3390/jmse11061109
  18. Y. Xianrui, Y. Xiaobing, L. Chenliang, and C. Hong, “An improved parameter control based on a fuzzy system for gravitational search algorithm,” Int. J. Comput. Intell. Syst., vol. 13, no. 1, pp. 893–903, 2020. https://doi.org/10.2991/ijcis.d.200615.001
  19. W. E. Pangesti, R. Suryadithia, M. Faisal, and ..., “Collaborative Filtering Based Recommender Systems For Marketplace Applications,” Int. J. …, vol. 2(5), no. 1201–1209, pp. 1201–1209, 2021. https://doi.org/10.51601/ijersc.v2i5.184
  20. R. Nugroho, A. Polina, and Y. Mahendra, “Tourism Site Recommender System Using Item-Based Collaborative Filtering Approach,” Int. J. Appl. Sci. Smart Technol., vol. 2, no. 2, pp. 119–126, 2020. https://doi.org/10.24071/ijasst.v2i2.2987
  21. A. Wahana, D. S. Maylawati, B. A. Wiwaha, M. A. Ramdhani, and A. S. Amin, “News recommendation system using collaborative filtering method,” J. Phys. Conf. Ser., vol. 1402, no. 7, 2019, doi: 10.1088/1742-6596/1402/7/077010.
  22. I. Ryngksai and L. Chameikho, “Recommender Systems : Types of Filtering,” Int. J. Eng. Res. Technol., vol. 3, no. 11, pp. 251–254, 2014.
  23. B. R. Gajanansapre, “On Fuzzy Logic to handle Vague and Imprecise Data,” IJournals Int. J. Softw. Hardw. Res. Eng., vol. 3, no. 9, pp. 75–80, 2015.
  24. F. Azmi, M. K. Gibran, A. Ridwan, and A. Saleh, “Enhancing Water Potability Assessment Using Hybrid Fuzzy-Naïve Bayes,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 1032–1043, 2023. https://doi.org/10.33022/ijcs.v12i3.3232
  25. I. Agus, S. W. Ningsih, and A. M. Abadi, “Fuzzy Decision Making with Mamdani Method and Its Aplication for Selection of Used Car in Sleman Yogyakarta Definition of Fuzzy Logic,” Seminar.Uny.Ac.Id, pp. 35–44, 2017.
  26. W. Sałabun et al., “A fuzzy inference system for players evaluation in multi-player sports: The football study case,” Symmetry (Basel)., vol. 12, no. 12, pp. 1–49, 2020. https://doi.org/10.3390/sym12122029
  27. P. C. V, V. P. Pandian V, V. K. Kumar V, and S. M. Bharathi V, “Recommendation System Using Naive Bayes Classifier,” Int. Res. J. Eng. Technol., pp. 5507–5510, 2020.
  28. B. Song, Y. Gao, and X. M. Li, “Research on Collaborative Filtering Recommendation Algorithm Based on Mahout and User Model,” J. Phys. Conf. Ser., vol. 1437, no. 1, 2020. https://doi.org/10.1088/1742-6596/1437/1/012095
  29. W. Wei, Z. Wang, C. Fu, R. Damaševičius, R. Scherer, and M. Wožniak, “Intelligent recommendation of related items based on naive bayes and collaborative filtering combination model,” J. Phys. Conf. Ser., vol. 1682, no. 1, 2020. https://doi.org/10.1088/1742-6596/1682/1/012043
  30. K. Mariskhana, I. D. Sintawati, and Widiarina, “Implementation of Data Mining to predict sales of Bogo helmets using the Naïve Bayes algorithm,” Sink. J. dan Penelit. Tek. Inform., vol. 7, no. 4, pp. 2303–2310, 2022. https://doi.org/10.33395/sinkron.v7i4.11768
  31. N. E. Ramli, Z. R. Yahya, and N. A. Said, “Confusion Matrix as Performance Measure for Corner Detectors,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 29, no. 1, pp. 256–265, 2022. https://doi.org/10.37934/araset.29.1.256265
  32. A. Tasnim, M. Saiduzzaman, M. A. Rahman, J. Akhter, and A. S. M. M. Rahaman, “Performance Evaluation of Multiple Classifiers for Predicting Fake News,” J. Comput. Commun., vol. 10, no. 09, pp. 1–21, 2022. https://doi.org/10.4236/jcc.2022.109001
Read More

References


R. Yu, Z. A. Pardos, H. Chau, and P. Brusilovsky, “Orienting Students to Course Recommendations Using Three Types of Explanation,” Adjun. Proc. 29th ACM Conf. User Model. Adapt. Pers., no. June 2021, pp. 238–245, 2021. https://doi.org/10.1145/3450614.3464483

D. P. Kusumaningrum, N. A. Setiyanto, E. Y. Hidayat, and K. Hastuti, “Recommendation System for Major University Determination Based on Student’s Profile and Interest,” J. Appl. Intell. Syst., vol. 2, no. 1, pp. 21–28, 2017. https://doi.org/10.33633/jais.v2i1.1389

N. Rachburee, P. Sunantapot, D. Ounjit, P. Panklom, P. Porking, and W. Punlumjeak, “A Major Recommendation System in Educational Mining,” 2021 1st Int. Conf. Cyber Manag. Eng., pp. 1–5, 2021. https://doi.org/10.1109/CyMaEn50288.2021.9497279

D. Roy and M. Dutta, “A systematic review and research perspective on recommender systems,” J. Big Data, vol. 9, no. 1, 2022. https://doi.org/10.1186/s40537-022-00592-5

N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, “Research problems in recommender systems,” J. Phys. Conf. Ser., vol. 1717, no. 1, 2021. https://doi.org/10.1088/1742-6596/1717/1/012002

J. Feigl and M. Bogdan, “Collaborative filtering with neural networks,” in The European Symposium on Artificial Neural Networks, 2017.

P. Valdiviezo-Diaz, F. Ortega, E. Cobos, and R. Lara-Cabrera, “A Collaborative Filtering Approach Based on Naïve Bayes Classifier,” IEEE Access, vol. 7, pp. 108581–108592, 2019. https://doi.org/10.1109/ACCESS.2019.2933048

A. Saleh, N. Dharshinni, D. Perangin-Angin, F. Azmi, and M. I. Sarif, “Implementation of Recommendation Systems in Determining Learning Strategies Using the Naïve Bayes Classifier Algorithm,” Sinkron, vol. 8, no. 1, pp. 256–267, 2023. https://doi.org/10.33395/sinkron.v8i1.11954

L. Shu-xian and F. Sen, “Design and Implementation of Movie Recommendation System Based on Naive Bayes,” J. Phys. Conf. Ser., vol. 1345, 2019. https://doi.org/10.1088/1742-6596/1345/4/042042

M. S. Ozcan and T. Temel, “NEW RECOMMENDER SYSTEM USING NAIVE BAYES FOR E-LEARNING,” 2016.

K. Rrmoku, B. Selimi, and L. Ahmedi, “Application of Trust in Recommender Systems—Utilizing Naive Bayes Classifier,” Computation, vol. 10, no. 1, 2022. https://doi.org/10.3390/computation10010006

N. Pahuja, S. Chaudhari, and P. Raundale, “A Review On Recent Approaches to Recommendation System Model Using Distinct Product Features,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol., vol. 1, pp. 764–767, 2019, doi: 10.1109/ICICICT46008.2019.8993399.

T. T. S. Nguyen, “Model-Based Book Recommender Systems using Naïve Bayes enhanced with Optimal Feature Selection,” Proc. 2019 8th Int. Conf. Softw. Comput. Appl., 2019, doi: https://dl.acm.org/doi/10.1145/3316615.3316727.

Z. Putri, Sugiyarto, and Salafudin, “Sentiment Analysis using Fuzzy Naïve Bayes Classifier on Covid-19,” Desimal J. Mat., vol. 4, no. 1, pp. 13–20, 2021. http://dx.doi.org/10.24042/djm.v4i2.7390

L. P. Wanti and O. Somantri, “Comparing Fuzzy Logic Mamdani and Naïve Bayes for Dental Disease Detection,” J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 2, pp. 182–195, 2022. http://dx.doi.org/10.20473/jisebi.8.2.182-195

A. Papa, Y. Shemet, and A. Yarovyi, “Analysis of fuzzy logic methods for forecasting customer churn,” Technol. Audit Prod. Reserv., vol. 1, no. 2(57), pp. 12–14, 2021. https://dx.doi.org/10.15587/2706-5448.2021.225285

H. Li, K. Yu, C. Lien, C. Lin, and C. Yu, “Improving Aquaculture Water Quality Using Dual-Input Fuzzy Logic Control for Ammonia Nitrogen Management,” J. Mar. Sci. Eng. Artic., 2023. https://doi.org/10.3390/jmse11061109

Y. Xianrui, Y. Xiaobing, L. Chenliang, and C. Hong, “An improved parameter control based on a fuzzy system for gravitational search algorithm,” Int. J. Comput. Intell. Syst., vol. 13, no. 1, pp. 893–903, 2020. https://doi.org/10.2991/ijcis.d.200615.001

W. E. Pangesti, R. Suryadithia, M. Faisal, and ..., “Collaborative Filtering Based Recommender Systems For Marketplace Applications,” Int. J. …, vol. 2(5), no. 1201–1209, pp. 1201–1209, 2021. https://doi.org/10.51601/ijersc.v2i5.184

R. Nugroho, A. Polina, and Y. Mahendra, “Tourism Site Recommender System Using Item-Based Collaborative Filtering Approach,” Int. J. Appl. Sci. Smart Technol., vol. 2, no. 2, pp. 119–126, 2020. https://doi.org/10.24071/ijasst.v2i2.2987

A. Wahana, D. S. Maylawati, B. A. Wiwaha, M. A. Ramdhani, and A. S. Amin, “News recommendation system using collaborative filtering method,” J. Phys. Conf. Ser., vol. 1402, no. 7, 2019, doi: 10.1088/1742-6596/1402/7/077010.

I. Ryngksai and L. Chameikho, “Recommender Systems : Types of Filtering,” Int. J. Eng. Res. Technol., vol. 3, no. 11, pp. 251–254, 2014.

B. R. Gajanansapre, “On Fuzzy Logic to handle Vague and Imprecise Data,” IJournals Int. J. Softw. Hardw. Res. Eng., vol. 3, no. 9, pp. 75–80, 2015.

F. Azmi, M. K. Gibran, A. Ridwan, and A. Saleh, “Enhancing Water Potability Assessment Using Hybrid Fuzzy-Naïve Bayes,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 1032–1043, 2023. https://doi.org/10.33022/ijcs.v12i3.3232

I. Agus, S. W. Ningsih, and A. M. Abadi, “Fuzzy Decision Making with Mamdani Method and Its Aplication for Selection of Used Car in Sleman Yogyakarta Definition of Fuzzy Logic,” Seminar.Uny.Ac.Id, pp. 35–44, 2017.

W. Sałabun et al., “A fuzzy inference system for players evaluation in multi-player sports: The football study case,” Symmetry (Basel)., vol. 12, no. 12, pp. 1–49, 2020. https://doi.org/10.3390/sym12122029

P. C. V, V. P. Pandian V, V. K. Kumar V, and S. M. Bharathi V, “Recommendation System Using Naive Bayes Classifier,” Int. Res. J. Eng. Technol., pp. 5507–5510, 2020.

B. Song, Y. Gao, and X. M. Li, “Research on Collaborative Filtering Recommendation Algorithm Based on Mahout and User Model,” J. Phys. Conf. Ser., vol. 1437, no. 1, 2020. https://doi.org/10.1088/1742-6596/1437/1/012095

W. Wei, Z. Wang, C. Fu, R. Damaševičius, R. Scherer, and M. Wožniak, “Intelligent recommendation of related items based on naive bayes and collaborative filtering combination model,” J. Phys. Conf. Ser., vol. 1682, no. 1, 2020. https://doi.org/10.1088/1742-6596/1682/1/012043

K. Mariskhana, I. D. Sintawati, and Widiarina, “Implementation of Data Mining to predict sales of Bogo helmets using the Naïve Bayes algorithm,” Sink. J. dan Penelit. Tek. Inform., vol. 7, no. 4, pp. 2303–2310, 2022. https://doi.org/10.33395/sinkron.v7i4.11768

N. E. Ramli, Z. R. Yahya, and N. A. Said, “Confusion Matrix as Performance Measure for Corner Detectors,” J. Adv. Res. Appl. Sci. Eng. Technol., vol. 29, no. 1, pp. 256–265, 2022. https://doi.org/10.37934/araset.29.1.256265

A. Tasnim, M. Saiduzzaman, M. A. Rahman, J. Akhter, and A. S. M. M. Rahaman, “Performance Evaluation of Multiple Classifiers for Predicting Fake News,” J. Comput. Commun., vol. 10, no. 09, pp. 1–21, 2022. https://doi.org/10.4236/jcc.2022.109001

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 25 Download : 15

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License