Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 4, November 2023
  4. Articles

Issue

Vol. 8, No. 4, November 2023

Issue Published : Nov 30, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

A Systematic Review of Artificial Intelligence in Assistive Technology for People with Visual Impairment

https://doi.org/10.22219/kinetik.v8i4`.1772
Liliek Triyono
Universitas Diponegoro
Rahmat Gernowo
Universitas Diponegoro
Prayitno
Politeknik Negeri Semarang
Saifur Rohman Cholil
Politeknik Negeri Semarang

Corresponding Author(s) : Liliek Triyono

liliektriyono@students.undip.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 4, November 2023
Article Published : Nov 30, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Recent advances in artificial intelligence (AI) have led to the development of numerous successful applications that utilize data to significantly enhance the quality of life for people with visual impairment. AI technology has the potential to further improve the lives of visually impaired individuals. However, accurately measuring the development of visual aids continues to be challenging. As an AI model is trained on larger and more diverse datasets, its performance becomes increasingly robust and applicable to a variety of scenarios. In the field of visual impairment, deep learning techniques have emerged as a solution to previous challenges associated with AI models. In this article, we provide a comprehensive and up-to-date review of recent research on the development of AI-powered visual aides tailored to the requirements of individuals with visual impairment. We adopt the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology, meticulously gathering and appraising pertinent literature culled from diverse databases. A rigorous selection process was undertaken, appraising articles against precise inclusion and exclusion criteria. Our meticulous search yielded a trove of 322 articles, and after diligent scrutiny, 12 studies were deemed suitable for inclusion in the ultimate analysis. The study's primary objective is to investigate the application of AI techniques to the creation of intelligent devices that aid visually impaired individuals in their daily lives. We identified a number of potential obstacles that researchers and developers in the field of visual impairment applications might encounter. In addition, opportunities for future research and advancements in AI-driven visual aides are discussed. This review seeks to provide valuable insights into the advancements, possibilities, and challenges in the development and implementation of AI technology for people with visual impairment. By examining the current state of the field and designating areas for future research, we expect to contribute to the ongoing progress of improving the lives of visually impaired individuals through the use of AI-powered visual aids.

Keywords

Deep Learning Artificial Intelligence Visual Impairment Visual Aids Assistive Technology
Triyono, L., Gernowo, R., Prayitno, & Cholil, S. R. . (2023). A Systematic Review of Artificial Intelligence in Assistive Technology for People with Visual Impairment. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(4`). https://doi.org/10.22219/kinetik.v8i4`.1772
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. P. Argüeso, “Human ocular mucins: The endowed guardians of sight,” Adv. Drug Deliv. Rev., vol. 180, 2022. https://doi.org/10.1016/j.addr.2021.114074
  2. P. R. Boyce, “Light, lighting and human health,” Light. Res. Technol., vol. 54, no. 2, pp. 101–144, 2022. https://doi.org/10.1177/14771535211010267
  3. S. Ferrari et al., “Presence of SARS-CoV-2 RNA in human corneal tissues donated in Italy during the COVID-19 pandemic,” BMJ Open Ophthalmol., vol. 7, no. 1, pp. 5–9, 2022. http://dx.doi.org/10.1136/bmjophth-2022-000990
  4. S. G. Singh Gustavo; Shah, Ruchi; Kramerov, Andrei A.; Wright, Robert Emery; Spektor, Tanya M; Ljubimov, Alexander V.; Arumugaswami, Vaithilingaraja; Kumar, Ashok, “SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response.,” Ocul. Surf., vol. 23, no. NA, pp. 184–194, 2021. https://doi.org/10.1016/j.jtos.2021.09.007
  5. M. M. C. Schwarz Kaleigh A; Davoli, Katherine A; McMillen, Cynthia M; Albe, Joseph R; Hoehl, Ryan M; Demers, Matthew J; Ganaie, Safder S; Price, David A; Leung, Daisy W; Amarasinghe, Gaya K; McElroy, Anita K; Reed, Douglas S; Hartman, Amy L, “Rift Valley Fever Virus Infects the Posterior Segment of the Eye and Induces Inflammation in a Rat Model of Ocular Disease.,” J. Virol., vol. 96, no. 20, pp. e0111222-NA, 2022. https://doi.org/10.1128/jvi.01112-22
  6. https://www.who.int/publications/i/item/9789241516570.
  7. B. Kuriakose, R. Shrestha, and F. E. Sandnes, “Tools and technologies for blind and visually impaired navigation support: a review,” IETE Tech. Rev., 2022. https://doi.org/10.1080/02564602.2020.1819893
  8. E. L. Cardillo Changzhi; Caddemi, Alina, “Millimeter-Wave Radar Cane: A Blind People Aid With Moving Human Recognition Capabilities,” IEEE J. Electromagn. RF Microwaves Med. Biol., vol. 6, no. 2, pp. 204–211, 2022. https://doi.org/10.1109/JERM.2021.3117129
  9. A. P. Budrionis Darius; Daniušis, Povilas; Indrulionis, Audrius, “Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.,” Assist. Technol., vol. 34, no. 2, pp. 1–17, 2020. https://doi.org/10.1080/10400435.2020.1743381
  10. J. M. K. Nesemann Ram Prasad; Byanju, Raghunandan; Poudyal, Bimal; Bhandari, Gopal; Bhandari, Sadhan; O’Brien, Kieran S; Stevens, Valerie M; Melo, Jason S; Keenan, Jeremy D., “Association of visual impairment with disability: a population-based study.,” Eye (Lond)., vol. 36, no. 3, pp. 1–7, 2021. https://doi.org/10.1038/s41433-021-01498-x
  11. V. P. Yasin Peniarsih; Gozali, Ahmad; Junaedi, Ifan, “Application of expert system diagnosis of color blindness with ishihara method with microsoft vb 6.0,” Int. J. Informatics, Econ. Manag. Sci., vol. 1, no. 1, p. 13, 2022. https://doi.org/10.52362/ijiems.v1i1.678
  12. H. X. Xinghong Liu; Zhuming, Zhang; Menghan, Xia; Chengze, Li; Tien-Tsin, Wong, “Colorblind-shareable videos by synthesizing temporal-coherent polynomial coefficients,” ACM Trans. Graph., vol. 38, no. 6, pp. 1–12, 2019. https://doi.org/10.1145/3355089.3356534
  13. R. T. Alcaraz Martínez Mireia Ribera; Granollers Saltiveri, Toni, “Methodology for heuristic evaluation of the accessibility of statistical charts for people with low vision and color vision deficiency,” Univers. Access Inf. Soc., vol. 21, no. 4, pp. 863–894, 2021. https://doi.org/10.1007/s10209-021-00816-0
  14. M. H. S. Mahjoob Javad; Anderson, Andrew J, “The effect of mental load on psychophysical and visual evoked potential visual acuity.,” Ophthalmic Physiol. Opt., vol. 42, no. 3, pp. 586–593, 2022. https://doi.org/10.1111/opo.12955
  15. M. H. S. Mahjoob Javad; Anderson, Andrew J, “The effect of mental load on psychophysical and visual evoked potential visual acuity.,” Ophthalmic Physiol. Opt., vol. 42, no. 3, pp. 586–593, 2022. https://doi.org/10.1111/opo.12955
  16. V. C. D. De Cock Pauline; Leu-Semenescu, Smaranda; Aerts, Cécile; Castelnovo, Giovanni; Abril, Beatriz; Drapier, Sophie; Olivet, Hélène; Corbillé, Anne-Gaëlle; Leclair-Visonneau, Laurène; Sallansonnet-Froment, Magali; Lebouteux, Marie; Anheim, Mathieu; Ruppert, E, “Safety and efficacy of subcutaneous night-time only apomorphine infusion to treat insomnia in patients with Parkinson’s disease (APOMORPHEE): a multicentre, randomised, controlled, double-blind crossover study.,” Lancet. Neurol., vol. 21, no. 5, pp. 428–437, 2022. https://doi.org/10.1016/s1474-4422(22)00085-0
  17. F. A. Almutairi Nawaf; Ahmad, Khabir; Magliyah, Moustafa S.; Schatz, Patrik, “Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia.,” Acta Ophthalmol., vol. 99, no. 6, pp. 581–591, 2020. https://doi.org/10.1111/aos.14693
  18. B.-J. Cho, “Congenital Stationary Night Blindness,” in Inherited Retinal Disease, Singapore: Springer Nature Singapore, 2022, pp. 117–123.
  19. S. Y. Mochida Takeshi; Nomura, Takuhei; Hatake, Ryoma; Ohno-Matsui, Kyoko, “Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes.,” Jpn. J. Ophthalmol., vol. 66, no. 3, pp. 285–295, 2022. https://doi.org/10.1007/s10384-022-00909-0
  20. L. E. Donaldson Arshia; Sacco, Simone; Micieli, Jonathan A.; Margolin, Edward, “Junctional Scotoma and Patterns of Visual Field Defects Produced by Lesions Involving the Optic Chiasm.,” J. Neuroophthalmol., vol. 42, no. 1, pp. e203–e208, 2021. https://doi.org/10.1097/wno.0000000000001394
  21. V. N. . D. Vakharia Beate; Tisdall, Martin, “Visual field defects in temporal lobe epilepsy surgery.,” Curr. Opin. Neurol., vol. 34, no. 2, pp. 188–196, 2021. https://doi.org/10.1097/wco.0000000000000905
  22. E. M. Ekici Sasan; Hou, Huiyuan; Proudfoot, James A.; Zangwill, Linda M.; L., Jiun; Oh, Won Hyuk; Kamalipour, Alireza; Liebmann, Jeffrey M.; De Moraes, Carlos Gustavo; Girkin, Christopher A.; El-Nimri, Nevin W.; Weinreb, Robert N., “Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes,” Am. J. Ophthalmol., vol. 223, no. NA, pp. 229–240, 2020. https://doi.org/10.1016/j.ajo.2020.10.015
  23. B. S. Schmitz Katherine L; Wingerson, Mathew J; Walker, Gregory A; Wilson, Julie C; Howell, David R, “Double Vision and Light Sensitivity Symptoms are Associated With Return-to-School Timing After Pediatric Concussion.,” Clin. J. Sport Med., vol. Publish Ah, 2022. https://doi.org/10.1097/jsm.0000000000001106
  24. R. K. Bartlett Yi Xuan; Hourcade, Juan Pablo; Rector, Kyle, “Exploring the Opportunities for Technologies to Enhance Quality of Life with People who have Experienced Vision Loss,” Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, p. 191, 2019. https://doi.org/10.1145/3290605.3300421
  25. S. W. Bi Cong; Zhang, Jilong; Huang, Wutao; Wu, Bochun; Gong, Yi; Ni, Wei, “A Survey on Artificial Intelligence Aided Internet-of-Things Technologies in Emerging Smart Libraries.,” Sensors (Basel)., vol. 22, no. 8, p. 2991, 2022. https://doi.org/10.3390/s22082991
  26. L. Z. Jia Zhi; Xu, Fei; Jin, Hai, “Cost-Efficient Continuous Edge Learning for Artificial Intelligence of Things,” IEEE Internet Things J., vol. 9, no. 10, pp. 7325–7337, 2022. https://doi.org/10.1109/JIOT.2021.3104089
  27. S. O. Zhu Kaoru; Dong, Mianxiong, “Energy-Efficient Artificial Intelligence of Things With Intelligent Edge,” IEEE Internet Things J., vol. 9, no. 10, pp. 7525–7532, 2022. https://doi.org/10.1109/JIOT.2022.3143722
  28. D. N. A. Nya Hassane, “Model-Free Control Policies for Inventory Management in Supply Chain,” 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), vol. NA, no. NA. p. NA-NA, 2022. https://doi.org/10.1109/CoDIT55151.2022.9803914
  29. Y. B. Mashayekhy Amir; Yuan, Xue-Ming; Xue, Anrong, “Impact of Internet of Things (IoT) on Inventory Management: A Literature Survey,” Logistics, vol. 6, no. 2, p. 33, 2022. https://doi.org/10.3390/logistics6020033
  30. Y.-M. H. Tang George To Sum; Lau, Yui-Yip; Tsui, Shuk-Ying, “Integrated Smart Warehouse and Manufacturing Management with Demand Forecasting in Small-Scale Cyclical Industries,” Machines, vol. 10, no. 6, p. 472, 2022. https://doi.org/10.3390/machines10060472
  31. M. K. Mahobe Pradeep; Jha, Shashi Shekhar, “Nature-Inspired AI Techniques in Intelligent Transportation System,” in Lecture Notes in Electrical Engineering, Springer Nature Singapore, 2022, pp. 251–263. https://doi.org/10.1007/978-981-16-8542-2_20
  32. D. K. Loske Matthias, “Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics,” Int. J. Prod. Econ., vol. 241, no. NA, pp. 108236-NA, 2021. https://doi.org/10.1016/j.ijpe.2021.108236
  33. I. Z. Lee Helen; Moore, Kate; Zhou, Xiaofei; Perret, Beatriz; Cheng, Yihong; Zheng, Ruiying; Pu, Grace, “AI Book Club,” Proceedings of the 53rd ACM Technical Symposium on Computer Science Education. ACM, 2022. https://doi.org/10.1145/3478431.3499318
  34. T. P. Kabudi Ilias O.; Olsen, Dag H., “AI-enabled adaptive learning systems: A systematic mapping of the literature,” Comput. Educ. Artif. Intell., vol. 2, p. 100017, 2021. https://doi.org/10.1016/j.caeai.2021.100017
  35. Y. A. Alsaawy Ahmad; Abi Sen, Adnan; Alshanqiti, Abdullah; Bhat, Wasim Ahmad; Bahbouh, Nour Mahmoud, “A Comprehensive and Effective Framework for Traffic Congestion Problem Based on the Integration of IoT and Data Analytics,” Appl. Sci., vol. 12, no. 4, p. 2043, 2022. https://doi.org/10.3390/app12042043
  36. S. P. Bhupathi Nithish, Ankit Panda, Trishala Reddy, Vishwa Gohil, Ishita Kundaliya, “Self-Driving Car to Drive Autonomously using Image Processing and Deep Learning,” Irjet, vol. 9, no. 1, pp. 125–132, 2022. http://dx.doi.org/10.13140/RG.2.2.16212.88963/1
  37. S. K. B. M.; Gayathri, S.; Srinidhi, S.; Hemasundari, H.; Sowmiya, S.; Shavan Kumar, S., “AI-Based Motorized Appearance Acknowledgement Scheme for an Attendance Marking System,” in Advances in Social Networking and Online Communities, vol. NA, no. NA, 2022, pp. 98–109.
  38. M. Surve, P. Joshi, S. Jamadar, and M. M. N. Vharkate, “Automatic Attendance System using Face Recognition Technique,” Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 2134–2138, 2020. http://www.doi.org/10.35940/ijrte.A2644.059120
  39. Y. Himeur et al., AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives, no. 0123456789. Springer Netherlands, 2022.
  40. A. Y. M. Chakor Azmani; Abdellah, Azmani, “Proposing a Layer to Integrate the Sub-classification of Monitoring Operations Based on AI and Big Data to Improve Efficiency of Information Technology Supervision,” Appl. Comput. Syst., vol. 27, no. 1, pp. 43–54, 2022. https://doi.org/10.2478/acss-2022-0005
  41. S. A. Upadhyaya Anushri; Rengaraj, Venkatesh; Srinivasan, Kavitha; Casey, Paula Anne Newman; Schehlein, Emily M., “Validation of a portable, non-mydriatic fundus camera compared to gold standard dilated fundus examination using slit lamp biomicroscopy for assessing the optic disc for glaucoma.,” Eye (Lond)., vol. 36, no. 2, pp. 1–7, 2021. https://doi.org/10.1038/s41433-021-01485-2
  42. D. Mishra, S. Gade, K. Glover, R. Sheshala, and T. R. R. Singh, “Vitreous Humor: Composition, Characteristics and Implication on Intravitreal Drug Delivery,” Curr. Eye Res., vol. 48, no. 2, pp. 208–218, 2022. https://doi.org/10.1080/02713683.2022.2119254
  43. R. F. V. Spaide Philippe; Maloca, Peter M; Scholl, Hendrik P N; Otto, Tilman P; Caujolle, Sophie, “Imaging The Vitreous With A Novel Boosted Optical Coherence Tomography Technique: Vitreous Degeneration and Cisterns.,” Retina, vol. 42, no. 8, pp. 1433–1441, 2022. https://doi.org/10.1097/iae.0000000000003474.
  44. S. M. . R. Zekavat Vineet K.; Trinder, Mark; Ye, Yixuan; Koyama, Satoshi; Honigberg, Michael C.; Yu, Zhi; Pampana, Akhil; Urbut, Sarah; Haidermota, Sara; O’Regan, Declan P.; Zhao, Hongyu; Ellinor, Patrick T.; Segrè, Ayellet V.; Elze, Tobias; Wiggs, Janey L.; Marton, “Deep Learning of the Retina Enables Phenome- and Genome-wide Analyses of the Microvasculature.,” Circulation, vol. 145, no. 2, pp. 134–150, 2021. https://doi.org/10.1161/CIRCULATIONAHA.121.057709
  45. T. M. Izumi Ichiro; Kawano, Taizo; Sakaihara, Manabu; Iida, Tomohiro, “Morphological differences of choroid in central serous chorioretinopathy determined by ultra-widefield optical coherence tomography.,” Graefes Arch. Clin. Exp. Ophthalmol., vol. 260, no. 1, pp. 1–7, 2021. https://doi.org/10.1007/s00417-021-05380-0
  46. X. Xu et al., “Automatic Segmentation and Measurement of Choroid Layer in High Myopia for OCT Imaging Using Deep Learning,” J. Digit. Imaging, vol. 35, no. 5, pp. 1153–1163, Oct. 2022. https://doi.org/10.1007/s10278-021-00571-x
  47. B. G.-V. Burgos-Blasco Noemi; Vidal-Villegas, Beatriz; Martinez-de-la-Casa, Jose M.; Donate-Lopez, Juan; Martín-Sánchez, Francisco Javier; González-Armengol, Juan Jorge; Porta-Etessam, Jesús; Martin, José Luis R.; Garcia-Feijoo, Julian, “Optic nerve and macular optical coherence tomography in recovered COVID-19 patients.,” Eur. J. Ophthalmol., vol. 32, no. 1, pp. 11206721211001020–11206721211001020, 2021. https://doi.org/10.1177/11206721211001019
  48. V. D.-M. Biousse Helen V; Saindane, Amit M; Lamirel, Cédric; Newman, Nancy J, “Imaging of the optic nerve: technological advances and future prospects.,” Lancet. Neurol., vol. 21, no. 12, pp. 1135–1150, 2022. https://doi.org/10.1016/s1474-4422(22)00173-9
  49. M. J. . M. Page Joanne E.; Bossuyt, Patrick M.M.; Boutron, Isabelle; Hoffmann, Tammy; Mulrow, Cynthia D.; Shamseer, Larissa; Tetzlaff, Jennifer; Akl, Elie A.; Brennan, Sue E.; Chou, Roger; Glanville, Julie; Grimshaw, Jeremy M.; Hróbjartsson, Asbjørn; Lalu, Manoj M., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 2021. https://doi.org/10.1136/bmj.n71
  50. PRISMA Endorsers, “PRISMA.”.
  51. M. McDonagh, K. Peterson, P. Raina, S. Chang, and P. Shekelle, “Avoiding Bias in Selecting Studies.,” Rockville (MD), 2008.
  52. Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data,” Comput. Methods Programs Biomed., vol. 166, pp. 99–105, 2018. https://doi.org/10.1016/j.cmpb.2018.10.004
  53. R. Tapu, B. Mocanu, and T. Zaharia, “DEEP-SEE: Joint object detection, tracking and recognition with application to visually impaired navigational assistance,” Sensors (Switzerland), vol. 17, no. 11, 2017. https://doi.org/10.3390/s17112473
  54. A. Nagarajan and G. M P, “Hybrid Optimization-Enabled Deep Learning for Indoor Object Detection and Distance Estimation to Assist Visually Impaired Persons,” Adv. Eng. Softw., vol. 176, no. July 2022, p. 103362, 2023. https://doi.org/10.1016/j.advengsoft.2022.103362
  55. J. Ganesan, A. T. Azar, S. Alsenan, N. A. Kamal, B. Qureshi, and A. E. Hassanien, “Deep Learning Reader for Visually Impaired,” Electron., vol. 11, no. 20, 2022. https://doi.org/10.3390/electronics11203335
  56. M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, “Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things,” Inf. Fusion, vol. 94, pp. 17–31, 2023. https://doi.org/10.1016/j.inffus.2023.01.015
  57. M. Zounemat-Kermani and A. Mahdavi-Meymand, “Hybrid meta-heuristics artificial intelligence models in simulating discharge passing the piano key weirs,” J. Hydrol., 2019. https://doi.org/10.1016/j.jhydrol.2018.11.052
  58. R. O. M. Ogundokun Rytis; Damaševičius, Robertas, “Human Posture Detection Using Image Augmentation and Hyperparameter-Optimized Transfer Learning Algorithms,” Appl. Sci., vol. 12, no. 19, p. 10156, 2022. https://doi.org/10.3390/app121910156
  59. P. F. . G. Felzenszwalb Ross; McAllester, David; Ramanan, Deva, “Object Detection with Discriminatively Trained Part-Based Models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, 2010. https://doi.org/10.1109/TPAMI.2009.167
  60. M. Ali, F. Sahin, S. Kumar, and C. Savur, “360° view camera based visual assistive technology for contextual scene information,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, 2017, vol. 2017-Janua, pp. 2135–2140. https://doi.org/10.1109/SMC.2017.8122935
  61. Y. B. LeCun Bernhard E.; Denker, John S.; Henderson, D.; Howard, Richard; Hubbard, W.; Jackel, Lawrence D., “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989. https://doi.org/10.1162/neco.1989.1.4.541
  62. C. Playout, R. Duval, M. C. Boucher, and F. Cheriet, “Focused Attention in Transformers for interpretable classification of retinal images,” Med. Image Anal., vol. 82, no. July, 2022. https://doi.org/10.1016/j.media.2022.102608
  63. R. Fan et al., “Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization,” Ophthalmol. Sci., vol. 3, no. 1, p. 100233, 2023. https://doi.org/10.1016/j.xops.2022.100233
  64. F. S. Shi Wei; Duan, Huiyu; Liu, Xiaotian; Hu, Menghan; Wang, Wei; Zhai, Guangtao, “Drawing reveals hallmarks of children with autism,” Displays, vol. 67, no. NA, pp. 102000-NA, 2021. https://doi.org/10.1016/j.displa.2021.102000
  65. G. S. R. . D. Satyanarayana Prashant; Das, Santos Kumar, “Vehicle detection and classification with spatio-temporal information obtained from CNN,” Displays, vol. 75, no. NA, p. 102294, 2022. https://doi.org/10.1016/j.displa.2022.102294
  66. C. Z. Hua Baojiang; Song, Weigang; Yang, Jianyu, “Circular coding: A technique for visual localization in urban areas,” Displays, vol. 75, no. NA, p. 102299, 2022. https://doi.org/10.1016/j.displa.2022.102299
  67. S. S. Feuerriegel Yash Raj; von Krogh, Georg; Zhang, Ce, “Bringing artificial intelligence to business management,” Nat. Mach. Intell., vol. 4, no. 7, pp. 611–613, 2022. https://doi.org/10.1038/s42256-022-00512-5
  68. X. W. Wang Chen; Liu, Bing; Zhou, Xiaoqing; Zhang, Liang; Zheng, Jin; Bai, Xiao, “Multi-view stereo in the Deep Learning Era: A comprehensive revfiew,” Displays, vol. 70, no. NA, pp. 102102-NA, 2021. https://doi.org/10.1016/j.displa.2021.102102
  69. L. L. Mohammadpour Teck Chaw; Liew, Chee Sun; Aryanfar, Alihossein, “A Survey of CNN-Based Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, p. 8162, 2022. https://doi.org/10.3390/app12168162
  70. M. Mukhiddinov, A. B. Abdusalomov, and J. Cho, “Automatic Fire Detection and Notification System Based on Improved YOLOv4 for the Blind and Visually Impaired,” Sensors, vol. 22, no. 9, 2022. https://doi.org/10.3390/s22093307
  71. A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in integration of vision and language research: A survey of tasks, datasets, and methods,” J. Artif. Intell. …, 2021.
  72. H. S. Phillips Shelly; Klang, Eyal, “Oncological Applications of Deep Learning Generative Adversarial Networks.,” JAMA Oncol., vol. 8, no. 5, pp. 677-NA, 2022. https://doi.org/10.1001/jamaoncol.2021.8202
  73. S. Shahriar, “GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network,” Displays, vol. 73, no. NA, pp. 102237-NA, 2022. https://doi.org/10.1016/j.displa.2022.102237
  74. A. Iqbal, M. Sharif, M. Yasmin, M. Raza, and S. Aftab, “Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey,” Int. J. Multimed. Inf. Retr., vol. 11, no. 3, pp. 333–368, 2022. https://doi.org/10.1007/s13735-022-00240-x
  75. C. Qian, J. Zhu, Y. Shen, Q. Jiang, and Q. Zhang, “Deep Transfer Learning in Mechanical Intelligent Fault Diagnosis: Application and Challenge,” Neural Process. Lett., vol. 54, no. 3, pp. 2509–2531, 2022. https://doi.org/10.1007/s11063-021-10719-z
  76. R. O. Ogundokun, R. Maskeliūnas, and R. Damaševičius, “Human Posture Detection Using Image Augmentation and Hyperparameter-Optimized Transfer Learning Algorithms,” Applied Sciences, vol. 12, no. 19. 2022. https://doi.org/10.3390/app121910156
  77. A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.” 2016.
  78. Y. Ganin et al., “Domain-Adversarial Training of Neural Networks.” 2016.
  79. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010. https://doi.org/10.1007/s11263-009-0275-4
  80. O. D. Russakovsky Jia; Su, Hao; Krause, Jonathan; Satheesh, Sanjeev; Ma, Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael S.; Berg, Alexander C.; Fei-Fei, Li, “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015. https://doi.org/10.1007/s11263-015-0816-y
  81. C. L. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and Zitnick, “Microsoft COCO: common objects in context,” in D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision – ECCV 2014, 2014, pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
  82. A. Kuznetsova et al., “The Open Images Dataset V4,” Int. J. Comput. Vis., vol. 128, no. 7, pp. 1956–1981, Jul. 2020. https://doi.org/10.1007/s11263-020-01316-z
  83. A. Z. M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007).” .
  84. J. W. M. Everingham, “The PASCAL visual object classes challenge 2012 (VOC2012) development kit 32.” .
  85. L. F.-F. J. Deng, W. Dong, R. Socher, L. Li, Kai Li, “ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848
  86. A. Aslam and E. Curry, “A Survey on Object Detection for the Internet of Multimedia Things (IoMT) using Deep Learning and Event-based Middleware: Approaches, Challenges, and Future Directions,” Image Vis. Comput., vol. 106, p. 104095, Feb. 2021. https://doi.org/10.1016/j.imavis.2020.104095
  87. N. E. Ongalia Titiek; Meryana, Pauline, “COMPUTER VISION SYNDROME IN MEDICAL STUDENTS IN THE ERA OF THE COVID-19 PANDEMIC,” J. Widya Med. Jr., vol. 4, no. 5, pp. 199–204, 2022. https://doi.org/10.33508/jwmj.v4i3.4096
  88. H. Ö. Öztürk Bediz, “The Effects of Smartphone, Tablet and Computer Overuse on Children’s Eyes During the COVID-19 Pandemic,” J. Pediatr. Res., vol. 8, no. 4, pp. 491–497, 2021. https://doi.org/10.4274/jpr.galenos.2021.72623
  89. M. M. A. Zalat Soliman; Wassif, Ghada A.; Tarhouny, Shereen A. El; Mansour, Tayseer M., “Computer vision syndrome, visual ergonomics and amelioration among staff members in a Saudi medical college,” Int. J. Occup. Saf. Ergon., vol. 28, no. 2, pp. 1–9, 2021. https://doi.org/10.1080/10803548.2021.1877928
  90. D. Feng, C. Lu, Q. Cai, and J. Lu, “A Study on the Design of Vision Protection Products Based on Children’s Visual Fatigue under Online Learning Scenarios,” Healthcare, vol. 10, no. 4, p. 621, Mar. 2022. https://doi.org/10.3390/healthcare10040621
  91. K. K. . G. Weise Sarah J.; Hale, M Heath; Springer, Daniel B.; Swanson, Mark W., “Pre-participation Vision Screening and Comprehensive Eye Care in National Collegiate Athletic Association Athletes.,” Optom. Vis. Sci., vol. 98, no. 7, pp. 764–770, 2021. https://doi.org/10.1097/opx.0000000000001738
  92. K. K. . S. Weise Mark W.; Galt, Sarah J.; Springer, Daniel B.; Crosson, Jason N.; DeCarlo, Dawn K.; Hale, Matthew Heath; Nicholson, Joshua Ryne; Robinson, James B., “Objective Vision-related Indications for Clear and Tinted Football Helmet Visors.,” Optom. Vis. Sci., vol. 98, no. 7, pp. 833–838, 2021. https://doi.org/10.1097/opx.0000000000001730
  93. L. Y. Triyono Tri Raharjo; Sukamto, Sukamto; Hestinigsih, I, “VeRO: Smart home assistant for blind with voice recognition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1108, no. 1, pp. 012016-NA, 2021. https://doi.org/10.1088/1757-899x/1108/1/012016
  94. N. O. Yu Ziwei; Wang, Hehe; Tao, Da; Jing, Liang, “The Effects of Smart Home Interface Touch Button Design Features on Performance among Young and Senior Users.,” Int. J. Environ. Res. Public Health, vol. 19, no. 4, p. 2391, 2022. https://doi.org/10.3390/ijerph19042391
  95. S. K. Feitl Julian; Götzelmann, Timo, “Accessible Electrostatic Surface Haptics: Towards an Interactive Audiotactile Map Interface for People With Visual Impairments,” The15th International Conference on PErvasive Technologies Related to Assistive Environments, vol. NA, no. NA. p. NA-NA, 2022. https://doi.org/10.1145/3529190.3534781
Read More

References


P. Argüeso, “Human ocular mucins: The endowed guardians of sight,” Adv. Drug Deliv. Rev., vol. 180, 2022. https://doi.org/10.1016/j.addr.2021.114074

P. R. Boyce, “Light, lighting and human health,” Light. Res. Technol., vol. 54, no. 2, pp. 101–144, 2022. https://doi.org/10.1177/14771535211010267

S. Ferrari et al., “Presence of SARS-CoV-2 RNA in human corneal tissues donated in Italy during the COVID-19 pandemic,” BMJ Open Ophthalmol., vol. 7, no. 1, pp. 5–9, 2022. http://dx.doi.org/10.1136/bmjophth-2022-000990

S. G. Singh Gustavo; Shah, Ruchi; Kramerov, Andrei A.; Wright, Robert Emery; Spektor, Tanya M; Ljubimov, Alexander V.; Arumugaswami, Vaithilingaraja; Kumar, Ashok, “SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response.,” Ocul. Surf., vol. 23, no. NA, pp. 184–194, 2021. https://doi.org/10.1016/j.jtos.2021.09.007

M. M. C. Schwarz Kaleigh A; Davoli, Katherine A; McMillen, Cynthia M; Albe, Joseph R; Hoehl, Ryan M; Demers, Matthew J; Ganaie, Safder S; Price, David A; Leung, Daisy W; Amarasinghe, Gaya K; McElroy, Anita K; Reed, Douglas S; Hartman, Amy L, “Rift Valley Fever Virus Infects the Posterior Segment of the Eye and Induces Inflammation in a Rat Model of Ocular Disease.,” J. Virol., vol. 96, no. 20, pp. e0111222-NA, 2022. https://doi.org/10.1128/jvi.01112-22

https://www.who.int/publications/i/item/9789241516570.

B. Kuriakose, R. Shrestha, and F. E. Sandnes, “Tools and technologies for blind and visually impaired navigation support: a review,” IETE Tech. Rev., 2022. https://doi.org/10.1080/02564602.2020.1819893

E. L. Cardillo Changzhi; Caddemi, Alina, “Millimeter-Wave Radar Cane: A Blind People Aid With Moving Human Recognition Capabilities,” IEEE J. Electromagn. RF Microwaves Med. Biol., vol. 6, no. 2, pp. 204–211, 2022. https://doi.org/10.1109/JERM.2021.3117129

A. P. Budrionis Darius; Daniušis, Povilas; Indrulionis, Audrius, “Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.,” Assist. Technol., vol. 34, no. 2, pp. 1–17, 2020. https://doi.org/10.1080/10400435.2020.1743381

J. M. K. Nesemann Ram Prasad; Byanju, Raghunandan; Poudyal, Bimal; Bhandari, Gopal; Bhandari, Sadhan; O’Brien, Kieran S; Stevens, Valerie M; Melo, Jason S; Keenan, Jeremy D., “Association of visual impairment with disability: a population-based study.,” Eye (Lond)., vol. 36, no. 3, pp. 1–7, 2021. https://doi.org/10.1038/s41433-021-01498-x

V. P. Yasin Peniarsih; Gozali, Ahmad; Junaedi, Ifan, “Application of expert system diagnosis of color blindness with ishihara method with microsoft vb 6.0,” Int. J. Informatics, Econ. Manag. Sci., vol. 1, no. 1, p. 13, 2022. https://doi.org/10.52362/ijiems.v1i1.678

H. X. Xinghong Liu; Zhuming, Zhang; Menghan, Xia; Chengze, Li; Tien-Tsin, Wong, “Colorblind-shareable videos by synthesizing temporal-coherent polynomial coefficients,” ACM Trans. Graph., vol. 38, no. 6, pp. 1–12, 2019. https://doi.org/10.1145/3355089.3356534

R. T. Alcaraz Martínez Mireia Ribera; Granollers Saltiveri, Toni, “Methodology for heuristic evaluation of the accessibility of statistical charts for people with low vision and color vision deficiency,” Univers. Access Inf. Soc., vol. 21, no. 4, pp. 863–894, 2021. https://doi.org/10.1007/s10209-021-00816-0

M. H. S. Mahjoob Javad; Anderson, Andrew J, “The effect of mental load on psychophysical and visual evoked potential visual acuity.,” Ophthalmic Physiol. Opt., vol. 42, no. 3, pp. 586–593, 2022. https://doi.org/10.1111/opo.12955

M. H. S. Mahjoob Javad; Anderson, Andrew J, “The effect of mental load on psychophysical and visual evoked potential visual acuity.,” Ophthalmic Physiol. Opt., vol. 42, no. 3, pp. 586–593, 2022. https://doi.org/10.1111/opo.12955

V. C. D. De Cock Pauline; Leu-Semenescu, Smaranda; Aerts, Cécile; Castelnovo, Giovanni; Abril, Beatriz; Drapier, Sophie; Olivet, Hélène; Corbillé, Anne-Gaëlle; Leclair-Visonneau, Laurène; Sallansonnet-Froment, Magali; Lebouteux, Marie; Anheim, Mathieu; Ruppert, E, “Safety and efficacy of subcutaneous night-time only apomorphine infusion to treat insomnia in patients with Parkinson’s disease (APOMORPHEE): a multicentre, randomised, controlled, double-blind crossover study.,” Lancet. Neurol., vol. 21, no. 5, pp. 428–437, 2022. https://doi.org/10.1016/s1474-4422(22)00085-0

F. A. Almutairi Nawaf; Ahmad, Khabir; Magliyah, Moustafa S.; Schatz, Patrik, “Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia.,” Acta Ophthalmol., vol. 99, no. 6, pp. 581–591, 2020. https://doi.org/10.1111/aos.14693

B.-J. Cho, “Congenital Stationary Night Blindness,” in Inherited Retinal Disease, Singapore: Springer Nature Singapore, 2022, pp. 117–123.

S. Y. Mochida Takeshi; Nomura, Takuhei; Hatake, Ryoma; Ohno-Matsui, Kyoko, “Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes.,” Jpn. J. Ophthalmol., vol. 66, no. 3, pp. 285–295, 2022. https://doi.org/10.1007/s10384-022-00909-0

L. E. Donaldson Arshia; Sacco, Simone; Micieli, Jonathan A.; Margolin, Edward, “Junctional Scotoma and Patterns of Visual Field Defects Produced by Lesions Involving the Optic Chiasm.,” J. Neuroophthalmol., vol. 42, no. 1, pp. e203–e208, 2021. https://doi.org/10.1097/wno.0000000000001394

V. N. . D. Vakharia Beate; Tisdall, Martin, “Visual field defects in temporal lobe epilepsy surgery.,” Curr. Opin. Neurol., vol. 34, no. 2, pp. 188–196, 2021. https://doi.org/10.1097/wco.0000000000000905

E. M. Ekici Sasan; Hou, Huiyuan; Proudfoot, James A.; Zangwill, Linda M.; L., Jiun; Oh, Won Hyuk; Kamalipour, Alireza; Liebmann, Jeffrey M.; De Moraes, Carlos Gustavo; Girkin, Christopher A.; El-Nimri, Nevin W.; Weinreb, Robert N., “Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes,” Am. J. Ophthalmol., vol. 223, no. NA, pp. 229–240, 2020. https://doi.org/10.1016/j.ajo.2020.10.015

B. S. Schmitz Katherine L; Wingerson, Mathew J; Walker, Gregory A; Wilson, Julie C; Howell, David R, “Double Vision and Light Sensitivity Symptoms are Associated With Return-to-School Timing After Pediatric Concussion.,” Clin. J. Sport Med., vol. Publish Ah, 2022. https://doi.org/10.1097/jsm.0000000000001106

R. K. Bartlett Yi Xuan; Hourcade, Juan Pablo; Rector, Kyle, “Exploring the Opportunities for Technologies to Enhance Quality of Life with People who have Experienced Vision Loss,” Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, p. 191, 2019. https://doi.org/10.1145/3290605.3300421

S. W. Bi Cong; Zhang, Jilong; Huang, Wutao; Wu, Bochun; Gong, Yi; Ni, Wei, “A Survey on Artificial Intelligence Aided Internet-of-Things Technologies in Emerging Smart Libraries.,” Sensors (Basel)., vol. 22, no. 8, p. 2991, 2022. https://doi.org/10.3390/s22082991

L. Z. Jia Zhi; Xu, Fei; Jin, Hai, “Cost-Efficient Continuous Edge Learning for Artificial Intelligence of Things,” IEEE Internet Things J., vol. 9, no. 10, pp. 7325–7337, 2022. https://doi.org/10.1109/JIOT.2021.3104089

S. O. Zhu Kaoru; Dong, Mianxiong, “Energy-Efficient Artificial Intelligence of Things With Intelligent Edge,” IEEE Internet Things J., vol. 9, no. 10, pp. 7525–7532, 2022. https://doi.org/10.1109/JIOT.2022.3143722

D. N. A. Nya Hassane, “Model-Free Control Policies for Inventory Management in Supply Chain,” 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), vol. NA, no. NA. p. NA-NA, 2022. https://doi.org/10.1109/CoDIT55151.2022.9803914

Y. B. Mashayekhy Amir; Yuan, Xue-Ming; Xue, Anrong, “Impact of Internet of Things (IoT) on Inventory Management: A Literature Survey,” Logistics, vol. 6, no. 2, p. 33, 2022. https://doi.org/10.3390/logistics6020033

Y.-M. H. Tang George To Sum; Lau, Yui-Yip; Tsui, Shuk-Ying, “Integrated Smart Warehouse and Manufacturing Management with Demand Forecasting in Small-Scale Cyclical Industries,” Machines, vol. 10, no. 6, p. 472, 2022. https://doi.org/10.3390/machines10060472

M. K. Mahobe Pradeep; Jha, Shashi Shekhar, “Nature-Inspired AI Techniques in Intelligent Transportation System,” in Lecture Notes in Electrical Engineering, Springer Nature Singapore, 2022, pp. 251–263. https://doi.org/10.1007/978-981-16-8542-2_20

D. K. Loske Matthias, “Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics,” Int. J. Prod. Econ., vol. 241, no. NA, pp. 108236-NA, 2021. https://doi.org/10.1016/j.ijpe.2021.108236

I. Z. Lee Helen; Moore, Kate; Zhou, Xiaofei; Perret, Beatriz; Cheng, Yihong; Zheng, Ruiying; Pu, Grace, “AI Book Club,” Proceedings of the 53rd ACM Technical Symposium on Computer Science Education. ACM, 2022. https://doi.org/10.1145/3478431.3499318

T. P. Kabudi Ilias O.; Olsen, Dag H., “AI-enabled adaptive learning systems: A systematic mapping of the literature,” Comput. Educ. Artif. Intell., vol. 2, p. 100017, 2021. https://doi.org/10.1016/j.caeai.2021.100017

Y. A. Alsaawy Ahmad; Abi Sen, Adnan; Alshanqiti, Abdullah; Bhat, Wasim Ahmad; Bahbouh, Nour Mahmoud, “A Comprehensive and Effective Framework for Traffic Congestion Problem Based on the Integration of IoT and Data Analytics,” Appl. Sci., vol. 12, no. 4, p. 2043, 2022. https://doi.org/10.3390/app12042043

S. P. Bhupathi Nithish, Ankit Panda, Trishala Reddy, Vishwa Gohil, Ishita Kundaliya, “Self-Driving Car to Drive Autonomously using Image Processing and Deep Learning,” Irjet, vol. 9, no. 1, pp. 125–132, 2022. http://dx.doi.org/10.13140/RG.2.2.16212.88963/1

S. K. B. M.; Gayathri, S.; Srinidhi, S.; Hemasundari, H.; Sowmiya, S.; Shavan Kumar, S., “AI-Based Motorized Appearance Acknowledgement Scheme for an Attendance Marking System,” in Advances in Social Networking and Online Communities, vol. NA, no. NA, 2022, pp. 98–109.

M. Surve, P. Joshi, S. Jamadar, and M. M. N. Vharkate, “Automatic Attendance System using Face Recognition Technique,” Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 2134–2138, 2020. http://www.doi.org/10.35940/ijrte.A2644.059120

Y. Himeur et al., AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives, no. 0123456789. Springer Netherlands, 2022.

A. Y. M. Chakor Azmani; Abdellah, Azmani, “Proposing a Layer to Integrate the Sub-classification of Monitoring Operations Based on AI and Big Data to Improve Efficiency of Information Technology Supervision,” Appl. Comput. Syst., vol. 27, no. 1, pp. 43–54, 2022. https://doi.org/10.2478/acss-2022-0005

S. A. Upadhyaya Anushri; Rengaraj, Venkatesh; Srinivasan, Kavitha; Casey, Paula Anne Newman; Schehlein, Emily M., “Validation of a portable, non-mydriatic fundus camera compared to gold standard dilated fundus examination using slit lamp biomicroscopy for assessing the optic disc for glaucoma.,” Eye (Lond)., vol. 36, no. 2, pp. 1–7, 2021. https://doi.org/10.1038/s41433-021-01485-2

D. Mishra, S. Gade, K. Glover, R. Sheshala, and T. R. R. Singh, “Vitreous Humor: Composition, Characteristics and Implication on Intravitreal Drug Delivery,” Curr. Eye Res., vol. 48, no. 2, pp. 208–218, 2022. https://doi.org/10.1080/02713683.2022.2119254

R. F. V. Spaide Philippe; Maloca, Peter M; Scholl, Hendrik P N; Otto, Tilman P; Caujolle, Sophie, “Imaging The Vitreous With A Novel Boosted Optical Coherence Tomography Technique: Vitreous Degeneration and Cisterns.,” Retina, vol. 42, no. 8, pp. 1433–1441, 2022. https://doi.org/10.1097/iae.0000000000003474.

S. M. . R. Zekavat Vineet K.; Trinder, Mark; Ye, Yixuan; Koyama, Satoshi; Honigberg, Michael C.; Yu, Zhi; Pampana, Akhil; Urbut, Sarah; Haidermota, Sara; O’Regan, Declan P.; Zhao, Hongyu; Ellinor, Patrick T.; Segrè, Ayellet V.; Elze, Tobias; Wiggs, Janey L.; Marton, “Deep Learning of the Retina Enables Phenome- and Genome-wide Analyses of the Microvasculature.,” Circulation, vol. 145, no. 2, pp. 134–150, 2021. https://doi.org/10.1161/CIRCULATIONAHA.121.057709

T. M. Izumi Ichiro; Kawano, Taizo; Sakaihara, Manabu; Iida, Tomohiro, “Morphological differences of choroid in central serous chorioretinopathy determined by ultra-widefield optical coherence tomography.,” Graefes Arch. Clin. Exp. Ophthalmol., vol. 260, no. 1, pp. 1–7, 2021. https://doi.org/10.1007/s00417-021-05380-0

X. Xu et al., “Automatic Segmentation and Measurement of Choroid Layer in High Myopia for OCT Imaging Using Deep Learning,” J. Digit. Imaging, vol. 35, no. 5, pp. 1153–1163, Oct. 2022. https://doi.org/10.1007/s10278-021-00571-x

B. G.-V. Burgos-Blasco Noemi; Vidal-Villegas, Beatriz; Martinez-de-la-Casa, Jose M.; Donate-Lopez, Juan; Martín-Sánchez, Francisco Javier; González-Armengol, Juan Jorge; Porta-Etessam, Jesús; Martin, José Luis R.; Garcia-Feijoo, Julian, “Optic nerve and macular optical coherence tomography in recovered COVID-19 patients.,” Eur. J. Ophthalmol., vol. 32, no. 1, pp. 11206721211001020–11206721211001020, 2021. https://doi.org/10.1177/11206721211001019

V. D.-M. Biousse Helen V; Saindane, Amit M; Lamirel, Cédric; Newman, Nancy J, “Imaging of the optic nerve: technological advances and future prospects.,” Lancet. Neurol., vol. 21, no. 12, pp. 1135–1150, 2022. https://doi.org/10.1016/s1474-4422(22)00173-9

M. J. . M. Page Joanne E.; Bossuyt, Patrick M.M.; Boutron, Isabelle; Hoffmann, Tammy; Mulrow, Cynthia D.; Shamseer, Larissa; Tetzlaff, Jennifer; Akl, Elie A.; Brennan, Sue E.; Chou, Roger; Glanville, Julie; Grimshaw, Jeremy M.; Hróbjartsson, Asbjørn; Lalu, Manoj M., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 2021. https://doi.org/10.1136/bmj.n71

PRISMA Endorsers, “PRISMA.”.

M. McDonagh, K. Peterson, P. Raina, S. Chang, and P. Shekelle, “Avoiding Bias in Selecting Studies.,” Rockville (MD), 2008.

Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data,” Comput. Methods Programs Biomed., vol. 166, pp. 99–105, 2018. https://doi.org/10.1016/j.cmpb.2018.10.004

R. Tapu, B. Mocanu, and T. Zaharia, “DEEP-SEE: Joint object detection, tracking and recognition with application to visually impaired navigational assistance,” Sensors (Switzerland), vol. 17, no. 11, 2017. https://doi.org/10.3390/s17112473

A. Nagarajan and G. M P, “Hybrid Optimization-Enabled Deep Learning for Indoor Object Detection and Distance Estimation to Assist Visually Impaired Persons,” Adv. Eng. Softw., vol. 176, no. July 2022, p. 103362, 2023. https://doi.org/10.1016/j.advengsoft.2022.103362

J. Ganesan, A. T. Azar, S. Alsenan, N. A. Kamal, B. Qureshi, and A. E. Hassanien, “Deep Learning Reader for Visually Impaired,” Electron., vol. 11, no. 20, 2022. https://doi.org/10.3390/electronics11203335

M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, “Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things,” Inf. Fusion, vol. 94, pp. 17–31, 2023. https://doi.org/10.1016/j.inffus.2023.01.015

M. Zounemat-Kermani and A. Mahdavi-Meymand, “Hybrid meta-heuristics artificial intelligence models in simulating discharge passing the piano key weirs,” J. Hydrol., 2019. https://doi.org/10.1016/j.jhydrol.2018.11.052

R. O. M. Ogundokun Rytis; Damaševičius, Robertas, “Human Posture Detection Using Image Augmentation and Hyperparameter-Optimized Transfer Learning Algorithms,” Appl. Sci., vol. 12, no. 19, p. 10156, 2022. https://doi.org/10.3390/app121910156

P. F. . G. Felzenszwalb Ross; McAllester, David; Ramanan, Deva, “Object Detection with Discriminatively Trained Part-Based Models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, 2010. https://doi.org/10.1109/TPAMI.2009.167

M. Ali, F. Sahin, S. Kumar, and C. Savur, “360° view camera based visual assistive technology for contextual scene information,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, 2017, vol. 2017-Janua, pp. 2135–2140. https://doi.org/10.1109/SMC.2017.8122935

Y. B. LeCun Bernhard E.; Denker, John S.; Henderson, D.; Howard, Richard; Hubbard, W.; Jackel, Lawrence D., “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989. https://doi.org/10.1162/neco.1989.1.4.541

C. Playout, R. Duval, M. C. Boucher, and F. Cheriet, “Focused Attention in Transformers for interpretable classification of retinal images,” Med. Image Anal., vol. 82, no. July, 2022. https://doi.org/10.1016/j.media.2022.102608

R. Fan et al., “Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization,” Ophthalmol. Sci., vol. 3, no. 1, p. 100233, 2023. https://doi.org/10.1016/j.xops.2022.100233

F. S. Shi Wei; Duan, Huiyu; Liu, Xiaotian; Hu, Menghan; Wang, Wei; Zhai, Guangtao, “Drawing reveals hallmarks of children with autism,” Displays, vol. 67, no. NA, pp. 102000-NA, 2021. https://doi.org/10.1016/j.displa.2021.102000

G. S. R. . D. Satyanarayana Prashant; Das, Santos Kumar, “Vehicle detection and classification with spatio-temporal information obtained from CNN,” Displays, vol. 75, no. NA, p. 102294, 2022. https://doi.org/10.1016/j.displa.2022.102294

C. Z. Hua Baojiang; Song, Weigang; Yang, Jianyu, “Circular coding: A technique for visual localization in urban areas,” Displays, vol. 75, no. NA, p. 102299, 2022. https://doi.org/10.1016/j.displa.2022.102299

S. S. Feuerriegel Yash Raj; von Krogh, Georg; Zhang, Ce, “Bringing artificial intelligence to business management,” Nat. Mach. Intell., vol. 4, no. 7, pp. 611–613, 2022. https://doi.org/10.1038/s42256-022-00512-5

X. W. Wang Chen; Liu, Bing; Zhou, Xiaoqing; Zhang, Liang; Zheng, Jin; Bai, Xiao, “Multi-view stereo in the Deep Learning Era: A comprehensive revfiew,” Displays, vol. 70, no. NA, pp. 102102-NA, 2021. https://doi.org/10.1016/j.displa.2021.102102

L. L. Mohammadpour Teck Chaw; Liew, Chee Sun; Aryanfar, Alihossein, “A Survey of CNN-Based Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, p. 8162, 2022. https://doi.org/10.3390/app12168162

M. Mukhiddinov, A. B. Abdusalomov, and J. Cho, “Automatic Fire Detection and Notification System Based on Improved YOLOv4 for the Blind and Visually Impaired,” Sensors, vol. 22, no. 9, 2022. https://doi.org/10.3390/s22093307

A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in integration of vision and language research: A survey of tasks, datasets, and methods,” J. Artif. Intell. …, 2021.

H. S. Phillips Shelly; Klang, Eyal, “Oncological Applications of Deep Learning Generative Adversarial Networks.,” JAMA Oncol., vol. 8, no. 5, pp. 677-NA, 2022. https://doi.org/10.1001/jamaoncol.2021.8202

S. Shahriar, “GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative adversarial network,” Displays, vol. 73, no. NA, pp. 102237-NA, 2022. https://doi.org/10.1016/j.displa.2022.102237

A. Iqbal, M. Sharif, M. Yasmin, M. Raza, and S. Aftab, “Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey,” Int. J. Multimed. Inf. Retr., vol. 11, no. 3, pp. 333–368, 2022. https://doi.org/10.1007/s13735-022-00240-x

C. Qian, J. Zhu, Y. Shen, Q. Jiang, and Q. Zhang, “Deep Transfer Learning in Mechanical Intelligent Fault Diagnosis: Application and Challenge,” Neural Process. Lett., vol. 54, no. 3, pp. 2509–2531, 2022. https://doi.org/10.1007/s11063-021-10719-z

R. O. Ogundokun, R. Maskeliūnas, and R. Damaševičius, “Human Posture Detection Using Image Augmentation and Hyperparameter-Optimized Transfer Learning Algorithms,” Applied Sciences, vol. 12, no. 19. 2022. https://doi.org/10.3390/app121910156

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.” 2016.

Y. Ganin et al., “Domain-Adversarial Training of Neural Networks.” 2016.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010. https://doi.org/10.1007/s11263-009-0275-4

O. D. Russakovsky Jia; Su, Hao; Krause, Jonathan; Satheesh, Sanjeev; Ma, Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael S.; Berg, Alexander C.; Fei-Fei, Li, “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015. https://doi.org/10.1007/s11263-015-0816-y

C. L. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and Zitnick, “Microsoft COCO: common objects in context,” in D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision – ECCV 2014, 2014, pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

A. Kuznetsova et al., “The Open Images Dataset V4,” Int. J. Comput. Vis., vol. 128, no. 7, pp. 1956–1981, Jul. 2020. https://doi.org/10.1007/s11263-020-01316-z

A. Z. M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007).” .

J. W. M. Everingham, “The PASCAL visual object classes challenge 2012 (VOC2012) development kit 32.” .

L. F.-F. J. Deng, W. Dong, R. Socher, L. Li, Kai Li, “ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

A. Aslam and E. Curry, “A Survey on Object Detection for the Internet of Multimedia Things (IoMT) using Deep Learning and Event-based Middleware: Approaches, Challenges, and Future Directions,” Image Vis. Comput., vol. 106, p. 104095, Feb. 2021. https://doi.org/10.1016/j.imavis.2020.104095

N. E. Ongalia Titiek; Meryana, Pauline, “COMPUTER VISION SYNDROME IN MEDICAL STUDENTS IN THE ERA OF THE COVID-19 PANDEMIC,” J. Widya Med. Jr., vol. 4, no. 5, pp. 199–204, 2022. https://doi.org/10.33508/jwmj.v4i3.4096

H. Ö. Öztürk Bediz, “The Effects of Smartphone, Tablet and Computer Overuse on Children’s Eyes During the COVID-19 Pandemic,” J. Pediatr. Res., vol. 8, no. 4, pp. 491–497, 2021. https://doi.org/10.4274/jpr.galenos.2021.72623

M. M. A. Zalat Soliman; Wassif, Ghada A.; Tarhouny, Shereen A. El; Mansour, Tayseer M., “Computer vision syndrome, visual ergonomics and amelioration among staff members in a Saudi medical college,” Int. J. Occup. Saf. Ergon., vol. 28, no. 2, pp. 1–9, 2021. https://doi.org/10.1080/10803548.2021.1877928

D. Feng, C. Lu, Q. Cai, and J. Lu, “A Study on the Design of Vision Protection Products Based on Children’s Visual Fatigue under Online Learning Scenarios,” Healthcare, vol. 10, no. 4, p. 621, Mar. 2022. https://doi.org/10.3390/healthcare10040621

K. K. . G. Weise Sarah J.; Hale, M Heath; Springer, Daniel B.; Swanson, Mark W., “Pre-participation Vision Screening and Comprehensive Eye Care in National Collegiate Athletic Association Athletes.,” Optom. Vis. Sci., vol. 98, no. 7, pp. 764–770, 2021. https://doi.org/10.1097/opx.0000000000001738

K. K. . S. Weise Mark W.; Galt, Sarah J.; Springer, Daniel B.; Crosson, Jason N.; DeCarlo, Dawn K.; Hale, Matthew Heath; Nicholson, Joshua Ryne; Robinson, James B., “Objective Vision-related Indications for Clear and Tinted Football Helmet Visors.,” Optom. Vis. Sci., vol. 98, no. 7, pp. 833–838, 2021. https://doi.org/10.1097/opx.0000000000001730

L. Y. Triyono Tri Raharjo; Sukamto, Sukamto; Hestinigsih, I, “VeRO: Smart home assistant for blind with voice recognition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1108, no. 1, pp. 012016-NA, 2021. https://doi.org/10.1088/1757-899x/1108/1/012016

N. O. Yu Ziwei; Wang, Hehe; Tao, Da; Jing, Liang, “The Effects of Smart Home Interface Touch Button Design Features on Performance among Young and Senior Users.,” Int. J. Environ. Res. Public Health, vol. 19, no. 4, p. 2391, 2022. https://doi.org/10.3390/ijerph19042391

S. K. Feitl Julian; Götzelmann, Timo, “Accessible Electrostatic Surface Haptics: Towards an Interactive Audiotactile Map Interface for People With Visual Impairments,” The15th International Conference on PErvasive Technologies Related to Assistive Environments, vol. NA, no. NA. p. NA-NA, 2022. https://doi.org/10.1145/3529190.3534781

Author Biographies

Rahmat Gernowo, Universitas Diponegoro

 

 

Prayitno, Politeknik Negeri Semarang

 

 

Saifur Rohman Cholil, Politeknik Negeri Semarang

 

 

Download this PDF file
PDF
Statistic
Read Counter : 77 Download : 11

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License