Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 4, November 2023
  4. Articles

Issue

Vol. 8, No. 4, November 2023

Issue Published : Nov 30, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Enhancing Accuracy on Chronic-Kidney Disease Detection Using Machine Learning with Technique of Resampling and Missing Value Treatment

https://doi.org/10.22219/kinetik.v8i4`.1761
Muhammad Raihan Wibowo
Telkom University
Irma Palupi
Telkom University

Corresponding Author(s) : Muhammad Raihan Wibowo

raihanwibowo@student.telkomuniversity.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 4, November 2023
Article Published : Nov 30, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Chronic kidney disease is one of the deadliest diseases in the world. It is important to identify chronic kidney disease at an early stage, so that treatment and prevention can be carried out early. This study used linear interpolation method to treat the missing values, resampling using SMOTE method, and several feature selection methods, such as Pearson’s correlation coefficient and Principal component analysis. For the classification methods, Support Vector Machine and Logistic Regression were used to build prediction models for chronic kidney disease based on dataset on UCI Machine Learning. To measure the performance of the model, several test scenarios were tested out so it can be compared to the previous research on the detection of chronic kidney disease, which is used as a benchmark for this study. The best result from the experiment is obtained from the scenario of resampling using SMOTE and feature selection using Principal Component Analysis with averaged accuracy, precision, and f1-score respectively are 98,8%, 100%, dan 98,77%.

Keywords

Chronic Kidney Disease Support Vector Machine Logistic Regression Principal Component Analysis SMOTE
Wibowo, M. R., & Palupi, I. (2023). Enhancing Accuracy on Chronic-Kidney Disease Detection Using Machine Learning with Technique of Resampling and Missing Value Treatment. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(4`). https://doi.org/10.22219/kinetik.v8i4`.1761
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Y. Amirgaliyev, S. Shamuluulu, and Serek Azamat, “Analysis of Chronic Kidney Disease Dataset by Applying Machine Learning Methods,” IEEE, 2018. https://doi.org/10.1109/ICAICT.2018.8747140
  2. C. K. Leung et al., “Data science for healthcare predictive analytics,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Aug. 2020. https://doi.org/10.1145/3410566.3410598
  3. G. D. Kalyankar, S. R. Poojara, and N. V. Dharwadkar, Predictive analysis of diabetic patient data using machine learning and Hadoop. I-SMAC, 2017. https://doi.org/10.1109/I-SMAC.2017.8058253
  4. K. Deepika and S. Seema, Predictive analytics to prevent and control chronic diseases. IEEE, 2016. https://doi.org/10.1109/ICATCCT.2016.7912028
  5. A. Maurya, R. Wable, R. Shinde, S. John, R. Jadhav, and R. Dakshayani, Chronic Kidney Disease Prediction and Recommendation of Suitable Diet Plan by using Machine Learning. 2019. 10.1109/icnte44896.2019.8946029
  6. F. A. N. Masruriyah, H. H. Handayani, T. Djatna, D. Wahiddin, and K. M. D. Hardhienata, “Predictive Analytics For Stroke Disease,” 2019. https://doi.org/10.1109/ICIC47613.2019.8985716
  7. I. U. Ekanayake and D. Herath, Chronic Kidney Disease Prediction Using Machine Learning Methods. 2020. https://doi.org/10.1109/MERCon50084.2020.9185249
  8. S. Pal, “Prediction for chronic kidney disease by categorical and non_categorical attributes using different machine learning algorithms,” Multimed Tools Appl, 2023. https://doi.org/10.1007/s11042-023-15188-1
  9. D. A. Debal and T. M. Sitote, “Chronic kidney disease prediction using machine learning techniques,” J Big Data, vol. 9, no. 1, Dec. 2022. https://doi.org/10.1186/s40537-022-00657-5
  10. G. M. Ifraz, M. H. Rashid, T. Tazin, S. Bourouis, and M. M. Khan, “Comparative Analysis for Prediction of Kidney Disease Using Intelligent Machine Learning Methods,” Comput Math Methods Med, vol. 2021, 2021. https://doi.org/10.1155/2021/6141470
  11. A. Charleonnan, T. Fufaung, T. Niyomwong, W. Chokchueypattanakit, S. Suwannawach, and N. Ninchawee, Predictive Analytics for Chronic Kidney Disease Using Machine Learning Techniques. IEEE, 2016. https://doi.org/10.1109/MITICON.2016.8025242
  12. L. Rubini, P. Soundarapandian, and P. Eswaran, “Chronic_Kidney_Disease,” UCI Machine Learning Repository.
  13. G. Huang, “Missing data filling method based on linear interpolation and lightgbm,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. https://doi.org/10.1088/1742-6596/1754/1/012187
  14. D. Thera, S. H. Sitorus, and D. M. Midyanti, “Penerapan Metode Interpolasi Linear dan Histogram Equalization Untuk Perbesaran dan Perbaikan Citra,” Coding : Jurnal Komputer dan Aplikasi, vol. 08, 2020.
  15. M. Tahir, F. Khan, M. K. I. Rahmani, and V. T. Hoang, “Discrimination of golgi proteins through efficient exploitation of hybrid feature spaces coupled with smote and ensemble of support vector machine,” IEEE Access, vol. 8, pp. 206028–206038, 2020. https://doi.org/10.1109/ACCESS.2020.3037343
  16. A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques,” IEEE Access, vol. 9, pp. 39707–39716, 2021. https://doi.org/10.1109/ACCESS.2021.3064084
  17. R. Gupta, N. Koli, N. Mahor, and N. Tejashri, Performance Analysis of Machine Learning Classifier for Predicting Chronic Kidney Disease. International Conference for Emerging Technology (INCET), 2020. https://doi.org/10.1109/INCET49848.2020.9154147
  18. C. M. Feng, Y. Xu, J. X. Liu, Y. L. Gao, and C. H. Zheng, “Supervised Discriminative Sparse PCA for Com-Characteristic Gene Selection and Tumor Classification on Multiview Biological Data,” IEEE Trans Neural Netw Learn Syst, vol. 30, no. 10, pp. 2926–2937, Oct. 2019. https://doi.org/10.1109/TNNLS.2019.2893190
  19. H. Kwon, W. Q. Malik, S. B. Rutkove, and B. Sanchez, “Separation of Subcutaneous Fat from Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis,” IEEE Trans Biomed Eng, vol. 66, no. 2, pp. 354–364, Feb. 2019. https://doi.org/10.1109/TBME.2018.2839977
  20. A. K. Chaudhuri and A. Das, “Variable Selection in Genetic Algorithm Model with Logistic Regression for Prediction of Progression to Diseases,” in 2020 IEEE International Conference for Innovation in Technology, INOCON 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. http://dx.doi.org/10.1109/INOCON50539.2020.9298372
  21. S. H. Adil, M. Ebrahim, K. Raza, and M. A. Hashmani, “Liver Patient Classification using Logistic Regression,” 2018. https://doi.org/10.1109/ICCOINS.2018.8510581
  22. P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers Inc., pp. 17312–17334, 2021. https://doi.org/10.1109/ACCESS.2021.3053763
  23. H. Alshamlan, H. Bin Taleb, and A. Al Sahow, “A Gene Prediction Function for Type 2 Diabetes Mellitus using Logistic Regression,” in 2020 11th International Conference on Information and Communication Systems, ICICS 2020, Institute of Electrical and Electronics Engineers Inc., Apr. 2020, pp. 38–41. https://doi.org/10.1109/ICICS49469.2020.239549
  24. R. G. Brereton and G. R. Lloyd, “Support Vector Machines for classification and regression,” Analyst, vol. 135, no. 2. Royal Society of Chemistry, pp. 230–267, 2010. https://doi.org/10.1039/b918972f
  25. O. Karal, “Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation,” in Proceedings - 2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. https://doi.org/10.1109/ASYU50717.2020.9259880
Read More

References


Y. Amirgaliyev, S. Shamuluulu, and Serek Azamat, “Analysis of Chronic Kidney Disease Dataset by Applying Machine Learning Methods,” IEEE, 2018. https://doi.org/10.1109/ICAICT.2018.8747140

C. K. Leung et al., “Data science for healthcare predictive analytics,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Aug. 2020. https://doi.org/10.1145/3410566.3410598

G. D. Kalyankar, S. R. Poojara, and N. V. Dharwadkar, Predictive analysis of diabetic patient data using machine learning and Hadoop. I-SMAC, 2017. https://doi.org/10.1109/I-SMAC.2017.8058253

K. Deepika and S. Seema, Predictive analytics to prevent and control chronic diseases. IEEE, 2016. https://doi.org/10.1109/ICATCCT.2016.7912028

A. Maurya, R. Wable, R. Shinde, S. John, R. Jadhav, and R. Dakshayani, Chronic Kidney Disease Prediction and Recommendation of Suitable Diet Plan by using Machine Learning. 2019. 10.1109/icnte44896.2019.8946029

F. A. N. Masruriyah, H. H. Handayani, T. Djatna, D. Wahiddin, and K. M. D. Hardhienata, “Predictive Analytics For Stroke Disease,” 2019. https://doi.org/10.1109/ICIC47613.2019.8985716

I. U. Ekanayake and D. Herath, Chronic Kidney Disease Prediction Using Machine Learning Methods. 2020. https://doi.org/10.1109/MERCon50084.2020.9185249

S. Pal, “Prediction for chronic kidney disease by categorical and non_categorical attributes using different machine learning algorithms,” Multimed Tools Appl, 2023. https://doi.org/10.1007/s11042-023-15188-1

D. A. Debal and T. M. Sitote, “Chronic kidney disease prediction using machine learning techniques,” J Big Data, vol. 9, no. 1, Dec. 2022. https://doi.org/10.1186/s40537-022-00657-5

G. M. Ifraz, M. H. Rashid, T. Tazin, S. Bourouis, and M. M. Khan, “Comparative Analysis for Prediction of Kidney Disease Using Intelligent Machine Learning Methods,” Comput Math Methods Med, vol. 2021, 2021. https://doi.org/10.1155/2021/6141470

A. Charleonnan, T. Fufaung, T. Niyomwong, W. Chokchueypattanakit, S. Suwannawach, and N. Ninchawee, Predictive Analytics for Chronic Kidney Disease Using Machine Learning Techniques. IEEE, 2016. https://doi.org/10.1109/MITICON.2016.8025242

L. Rubini, P. Soundarapandian, and P. Eswaran, “Chronic_Kidney_Disease,” UCI Machine Learning Repository.

G. Huang, “Missing data filling method based on linear interpolation and lightgbm,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Feb. 2021. https://doi.org/10.1088/1742-6596/1754/1/012187

D. Thera, S. H. Sitorus, and D. M. Midyanti, “Penerapan Metode Interpolasi Linear dan Histogram Equalization Untuk Perbesaran dan Perbaikan Citra,” Coding : Jurnal Komputer dan Aplikasi, vol. 08, 2020.

M. Tahir, F. Khan, M. K. I. Rahmani, and V. T. Hoang, “Discrimination of golgi proteins through efficient exploitation of hybrid feature spaces coupled with smote and ensemble of support vector machine,” IEEE Access, vol. 8, pp. 206028–206038, 2020. https://doi.org/10.1109/ACCESS.2020.3037343

A. Ishaq et al., “Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques,” IEEE Access, vol. 9, pp. 39707–39716, 2021. https://doi.org/10.1109/ACCESS.2021.3064084

R. Gupta, N. Koli, N. Mahor, and N. Tejashri, Performance Analysis of Machine Learning Classifier for Predicting Chronic Kidney Disease. International Conference for Emerging Technology (INCET), 2020. https://doi.org/10.1109/INCET49848.2020.9154147

C. M. Feng, Y. Xu, J. X. Liu, Y. L. Gao, and C. H. Zheng, “Supervised Discriminative Sparse PCA for Com-Characteristic Gene Selection and Tumor Classification on Multiview Biological Data,” IEEE Trans Neural Netw Learn Syst, vol. 30, no. 10, pp. 2926–2937, Oct. 2019. https://doi.org/10.1109/TNNLS.2019.2893190

H. Kwon, W. Q. Malik, S. B. Rutkove, and B. Sanchez, “Separation of Subcutaneous Fat from Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis,” IEEE Trans Biomed Eng, vol. 66, no. 2, pp. 354–364, Feb. 2019. https://doi.org/10.1109/TBME.2018.2839977

A. K. Chaudhuri and A. Das, “Variable Selection in Genetic Algorithm Model with Logistic Regression for Prediction of Progression to Diseases,” in 2020 IEEE International Conference for Innovation in Technology, INOCON 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. http://dx.doi.org/10.1109/INOCON50539.2020.9298372

S. H. Adil, M. Ebrahim, K. Raza, and M. A. Hashmani, “Liver Patient Classification using Logistic Regression,” 2018. https://doi.org/10.1109/ICCOINS.2018.8510581

P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers Inc., pp. 17312–17334, 2021. https://doi.org/10.1109/ACCESS.2021.3053763

H. Alshamlan, H. Bin Taleb, and A. Al Sahow, “A Gene Prediction Function for Type 2 Diabetes Mellitus using Logistic Regression,” in 2020 11th International Conference on Information and Communication Systems, ICICS 2020, Institute of Electrical and Electronics Engineers Inc., Apr. 2020, pp. 38–41. https://doi.org/10.1109/ICICS49469.2020.239549

R. G. Brereton and G. R. Lloyd, “Support Vector Machines for classification and regression,” Analyst, vol. 135, no. 2. Royal Society of Chemistry, pp. 230–267, 2010. https://doi.org/10.1039/b918972f

O. Karal, “Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation,” in Proceedings - 2020 Innovations in Intelligent Systems and Applications Conference, ASYU 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. https://doi.org/10.1109/ASYU50717.2020.9259880

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 6 Download : 6

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License