Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 3, August 2023
  4. Articles

Issue

Vol. 8, No. 3, August 2023

Issue Published : Aug 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Designing a Smart Inverter for Voltage Sag Compensation Due to Motor Start-up

https://doi.org/10.22219/kinetik.v8i3.1744
Indra Budi Hermawan
Institut Teknologi Sepuluh Nopember
Ashari Mochamad
Institut Teknologi Sepuluh Nopember
Dedet Candra Riawan
Institut Teknologi Sepuluh Nopember

Corresponding Author(s) : Ashari Mochamad

ashari@ee.its.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 3, August 2023
Article Published : Aug 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Starting a large induction motor will always follow up with an inrush current as the nature of an induction motor. On a less stiff power system, that inrush current will be causing a Voltage Sag (VS). A big VS can lead to significant disruptions in power quality and reliability. To address this, a Smart Inverter with an Artificial Intelligence (AI) -driven controller installed in a Photovoltaic (PV) farm is proposed for voltage sag recovery. During normal conditions, the PV farm acts as a power source supporting the main grid, but when large induction motors are started, the smart inverter connected to the PV is responsible for power conversion to recover sags caused by the Induction motor inrush current. The controller inside the Inverter ensures optimal operation. The use of AI also compares the effectiveness of using the Fuzzy Logic Controller (FLC) with the Proportional Integral (PI) Controller to assess their performance in reducing current spikes. Based on simulations, the FLC outperformed PI Controller in mitigating the voltage sag and avoiding the Low Voltage Ride-Through (LVRT). Simulation results show that voltage sag can be recovered for up to 97% of the nominal voltage, a significant improvement over the 80% sag recovery without the smart Inverter. At a nominal grid voltage of 6,600 volts, the VS Magnitude was successfully increased from 5,210 volts to 6,368 volts and the VS Duration also decreased from 6.96 s to 4.97 s. The results achieved validate the effectiveness of the approach in improving the power quality.

Keywords

Smart Inverter Artificial Intelligent Controler Inrush Current Induction Motor Voltage Sag Recovery Power Quality Improvement PV Farm ancillary function
Budi Hermawan, I., Mochamad, A., & Candra Riawan, D. (2023). Designing a Smart Inverter for Voltage Sag Compensation Due to Motor Start-up. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(3). https://doi.org/10.22219/kinetik.v8i3.1744
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Melfi, M. J., & Umans, S. D. (2012). Squirrel-cage induction motors: Understanding starting transients. IEEE Industry Applications Magazine, 18(6), 28–36. https://doi.org/10.1109/MIAS.2012.2210091
  2. Ledoux, K., Visser, P. W., Hulin, J. D., & Nguyen, H. (2015). Starting large synchronous motors in weak power systems. IEEE Transactions on Industry Applications, 51(3), 2676–2682. https://doi.org/10.1109/TIA.2014.2373820
  3. 1668-2017 - IEEE Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1000 V. (2017). IEEE.
  4. Ntare, R., Abbasy, N. H., & Youssef, K. H. M. (2019). Low Voltage Ride through Control Capability of a Large Grid Connected PV System Combining DC Chopper and Current Limiting Techniques. Journal of Power and Energy Engineering, 07(01), 62–79. https://doi.org/10.4236/jpee.2019.71004
  5. Nelson, R. (2012). Fault Ride-Through trip curves. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESGM.2012.6343983
  6. Menteri Energi dan Sumbar Daya Mineral Republik Indonesia (2020). Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia nomor 20 Tahun 2020 tentang Aturan Jaringan Sistem Tenaga Listrik (Grid Code). https://jdih.esdm.go.id/index.php/web/result/2120/detail.
  7. Aaron, H., Thomas, JN., Thomas, JD., Gianni, P., Kevin, A. (2019). Exploring New and Conventional Starting Methods of Large Medium-Voltage Induction Motors on Limited kVA Sources, IEEE Transactions On Industry Applications, Vol. 55, No. 5, pp. 4474-4482, September/October 2019. https://doi.org/10.1109/IAS.2018.8544648
  8. Yong. H., Allan. T., Flexible AC Transmission System (FACTS), (1999). IET Power and Energy Series, Volume 30”, The Institue of Electrical Engineers, London.
  9. Nattapol, H.-U., & Bhumkittipich, K. (2019). Improvement of Low Voltage Ride-through Capability of DFIG-based Wind Turbines under Low Voltage Condition; Improvement of Low Voltage Ride-through Capability of DFIG-based Wind Turbines under Low Voltage Condition. In 2019 7th International Electrical Engineering Congress (iEECON).
  10. Ren, K., Zhang, X., Wang, F., Guo, L., Wang, Z., & Wang, L. (2016). Grid fault ride through of a medium-voltage three-level full power wind power converter. 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, 1509–1514. https://doi.org/10.1109/IPEMC.2016.7512515
  11. Zhang, Z., You, X., Ma, H., Zhao, K., & Zhou, N. (2021). Research on Application of Low Voltage Ride through Technology of Auxiliary Equipment Inverter of Thermal Power Plant in Power Grid. Proceedings - 2021 6th Asia Conference on Power and Electrical Engineering, ACPEE 2021, 1446–1450. https://doi.org/10.1109/ACPEE51499.2021.9437040
  12. Wang, L., Bai, F., Yan, R., & Saha, T. K. (2018). Real-Time Coordinated Voltage Control of PV Inverters and Energy Storage for Weak Networks with High PV Penetration. IEEE Transactions on Power Systems, 33(3), 3383–3395. https://doi.org/10.1109/TPWRS.2018.2789897
  13. Liu, Y., & Tian, L. (2017). Research on low voltage ride through technology of grid-connected photovoltaic system. 2016 International Conference on Smart Grid and Clean Energy Technologies, ICSGCE 2016, 212–216. https://doi.org/10.1109/ICSGCE.2016.7876055
  14. Hasanien, H. M. (2016). An Adaptive Control Strategy for Low Voltage Ride Through Capability Enhancement of Grid-Connected Photovoltaic Power Plants. IEEE Transactions on Power Systems, 31(4), 3230–3237. https://doi.org/10.1109/TPWRS.2015.2466618
  15. Shin, D., Lee, K. J., Lee, J. P., Yoo, D. W., & Kim, H. J. (2015). Implementation of fault ride-through techniques of grid-connected inverter for distributed energy resources with adaptive low-pass notch PLL. IEEE Transactions on Power Electronics, 30(5), 2859–2870. https://doi.org/10.1109/TPEL.2014.2378792
  16. Faanzir, F., Ashari, M., Soedibyo, S., Suwito, S., & Umar, U. (2022). The Design of DC Micro Grid with a Load-Based Battery Discharge Method for Remote Island Electrification Utilizes Marine Currents and Solar Photovoltaic. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v7i4.1576
  17. Hussain Panhwar, I., Ahmed, K., Seyedmahmoudian, M., Stojcevski, A., Horan, B., Mekhilef, S., Aslam, A., & Asghar, M. (2020). Mitigating power fluctuations for energy storage in wind energy conversion system using supercapacitors. IEEE Access, 8, 189747–189760. https://doi.org/10.1109/ACCESS.2020.3031446
  18. Somayajula, D., & Crow, M. L. (2014). An ultracapacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid. IEEE Transactions on Sustainable Energy, 5(4), 1145–1155. https://doi.org/10.1109/TSTE.2014.2334622
  19. Ammar, M., & Joós, G. (2014). A short-term energy storage system for voltage quality improvement in distributed wind power. IEEE Transactions on Energy Conversion, 29(4), 997–1007. https://doi.org/10.1109/TEC.2014.2360071
  20. Ghazanfari, A., Hamzeh, M., Mokhtari, H., & Karimi, H. (2012). Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid. IEEE Transactions on Smart Grid, 3(4), 1903–1910. https://doi.org/10.1109/TSG.2012.2194169
  21. Sun, G., Li, Y., Jin, W., Li, S., & Gao, Y. (2019). A Novel Low Voltage Ride-Through Technique of Three-Phase Grid-Connected Inverters Based on a Nonlinear Phase-Locked Loop. IEEE Access, 7, 66609–66622. https://doi.org/10.1109/ACCESS.2019.2912859
  22. Talha, M., Raihan, S. R. S., Rahim, N. A., Akhtar, M. N., Butt, O. M., & Hussain, M. M. (2022). Multi-Functional PV Inverter With Low Voltage Ride-Through and Constant Power Output. IEEE Access, 10, 29567–29588. https://doi.org/10.1109/ACCESS.2022.3158983
  23. Budiman, F. N., & Ramadhani, M. R. (2018). Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 191–202. https://doi.org/10.22219/kinetik.v3i3.617
  24. Han, C., Huang, A. Q., Baran, M. E., Bhattacharya, S., Litzenberger, W., Anderson, L., Johnson, A. L., & Edris, A. A. (2008). STATCOM impact study on the integration of a large wind farm into a weak loop power system. IEEE Transactions on Energy Conversion, 23(1), 226–233. https://doi.org/10.1109/TEC.2006.888031
  25. Hermawan, I. B., Ashari, M., & Riawan, D. C. (2022). PV Farm Ancillary Function for Voltage Sag Mitigation Caused by Inrush Current of an Induction Motor. International Journal of Intelligent Engineering and Systems, 15(6), 325–336. https://doi.org/10.22266/ijies2022.1231.31
  26. Mickey, K. (2016). “Process Control A Practical Approach, Second edition.”, Chichester, West Sussex, United Kingdom: John Wiley &Sons Inc.
  27. Suwito, S., Ashari, M., Rivai, M., & Mustaghfirin, M. A. (2022). Enhancement of Photovoltaic Pressurized Irrigation System Based on Hybrid Kalman Fuzzy. International Journal of Intelligent Engineering and Systems, 15(2), 426–440. https://doi.org/10.22266/ijies2022.0430.39
Read More

References


Melfi, M. J., & Umans, S. D. (2012). Squirrel-cage induction motors: Understanding starting transients. IEEE Industry Applications Magazine, 18(6), 28–36. https://doi.org/10.1109/MIAS.2012.2210091

Ledoux, K., Visser, P. W., Hulin, J. D., & Nguyen, H. (2015). Starting large synchronous motors in weak power systems. IEEE Transactions on Industry Applications, 51(3), 2676–2682. https://doi.org/10.1109/TIA.2014.2373820

1668-2017 - IEEE Recommended Practice for Voltage Sag and Short Interruption Ride-Through Testing for End-Use Electrical Equipment Rated Less than 1000 V. (2017). IEEE.

Ntare, R., Abbasy, N. H., & Youssef, K. H. M. (2019). Low Voltage Ride through Control Capability of a Large Grid Connected PV System Combining DC Chopper and Current Limiting Techniques. Journal of Power and Energy Engineering, 07(01), 62–79. https://doi.org/10.4236/jpee.2019.71004

Nelson, R. (2012). Fault Ride-Through trip curves. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESGM.2012.6343983

Menteri Energi dan Sumbar Daya Mineral Republik Indonesia (2020). Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia nomor 20 Tahun 2020 tentang Aturan Jaringan Sistem Tenaga Listrik (Grid Code). https://jdih.esdm.go.id/index.php/web/result/2120/detail.

Aaron, H., Thomas, JN., Thomas, JD., Gianni, P., Kevin, A. (2019). Exploring New and Conventional Starting Methods of Large Medium-Voltage Induction Motors on Limited kVA Sources, IEEE Transactions On Industry Applications, Vol. 55, No. 5, pp. 4474-4482, September/October 2019. https://doi.org/10.1109/IAS.2018.8544648

Yong. H., Allan. T., Flexible AC Transmission System (FACTS), (1999). IET Power and Energy Series, Volume 30”, The Institue of Electrical Engineers, London.

Nattapol, H.-U., & Bhumkittipich, K. (2019). Improvement of Low Voltage Ride-through Capability of DFIG-based Wind Turbines under Low Voltage Condition; Improvement of Low Voltage Ride-through Capability of DFIG-based Wind Turbines under Low Voltage Condition. In 2019 7th International Electrical Engineering Congress (iEECON).

Ren, K., Zhang, X., Wang, F., Guo, L., Wang, Z., & Wang, L. (2016). Grid fault ride through of a medium-voltage three-level full power wind power converter. 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, 1509–1514. https://doi.org/10.1109/IPEMC.2016.7512515

Zhang, Z., You, X., Ma, H., Zhao, K., & Zhou, N. (2021). Research on Application of Low Voltage Ride through Technology of Auxiliary Equipment Inverter of Thermal Power Plant in Power Grid. Proceedings - 2021 6th Asia Conference on Power and Electrical Engineering, ACPEE 2021, 1446–1450. https://doi.org/10.1109/ACPEE51499.2021.9437040

Wang, L., Bai, F., Yan, R., & Saha, T. K. (2018). Real-Time Coordinated Voltage Control of PV Inverters and Energy Storage for Weak Networks with High PV Penetration. IEEE Transactions on Power Systems, 33(3), 3383–3395. https://doi.org/10.1109/TPWRS.2018.2789897

Liu, Y., & Tian, L. (2017). Research on low voltage ride through technology of grid-connected photovoltaic system. 2016 International Conference on Smart Grid and Clean Energy Technologies, ICSGCE 2016, 212–216. https://doi.org/10.1109/ICSGCE.2016.7876055

Hasanien, H. M. (2016). An Adaptive Control Strategy for Low Voltage Ride Through Capability Enhancement of Grid-Connected Photovoltaic Power Plants. IEEE Transactions on Power Systems, 31(4), 3230–3237. https://doi.org/10.1109/TPWRS.2015.2466618

Shin, D., Lee, K. J., Lee, J. P., Yoo, D. W., & Kim, H. J. (2015). Implementation of fault ride-through techniques of grid-connected inverter for distributed energy resources with adaptive low-pass notch PLL. IEEE Transactions on Power Electronics, 30(5), 2859–2870. https://doi.org/10.1109/TPEL.2014.2378792

Faanzir, F., Ashari, M., Soedibyo, S., Suwito, S., & Umar, U. (2022). The Design of DC Micro Grid with a Load-Based Battery Discharge Method for Remote Island Electrification Utilizes Marine Currents and Solar Photovoltaic. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v7i4.1576

Hussain Panhwar, I., Ahmed, K., Seyedmahmoudian, M., Stojcevski, A., Horan, B., Mekhilef, S., Aslam, A., & Asghar, M. (2020). Mitigating power fluctuations for energy storage in wind energy conversion system using supercapacitors. IEEE Access, 8, 189747–189760. https://doi.org/10.1109/ACCESS.2020.3031446

Somayajula, D., & Crow, M. L. (2014). An ultracapacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid. IEEE Transactions on Sustainable Energy, 5(4), 1145–1155. https://doi.org/10.1109/TSTE.2014.2334622

Ammar, M., & Joós, G. (2014). A short-term energy storage system for voltage quality improvement in distributed wind power. IEEE Transactions on Energy Conversion, 29(4), 997–1007. https://doi.org/10.1109/TEC.2014.2360071

Ghazanfari, A., Hamzeh, M., Mokhtari, H., & Karimi, H. (2012). Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid. IEEE Transactions on Smart Grid, 3(4), 1903–1910. https://doi.org/10.1109/TSG.2012.2194169

Sun, G., Li, Y., Jin, W., Li, S., & Gao, Y. (2019). A Novel Low Voltage Ride-Through Technique of Three-Phase Grid-Connected Inverters Based on a Nonlinear Phase-Locked Loop. IEEE Access, 7, 66609–66622. https://doi.org/10.1109/ACCESS.2019.2912859

Talha, M., Raihan, S. R. S., Rahim, N. A., Akhtar, M. N., Butt, O. M., & Hussain, M. M. (2022). Multi-Functional PV Inverter With Low Voltage Ride-Through and Constant Power Output. IEEE Access, 10, 29567–29588. https://doi.org/10.1109/ACCESS.2022.3158983

Budiman, F. N., & Ramadhani, M. R. (2018). Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 191–202. https://doi.org/10.22219/kinetik.v3i3.617

Han, C., Huang, A. Q., Baran, M. E., Bhattacharya, S., Litzenberger, W., Anderson, L., Johnson, A. L., & Edris, A. A. (2008). STATCOM impact study on the integration of a large wind farm into a weak loop power system. IEEE Transactions on Energy Conversion, 23(1), 226–233. https://doi.org/10.1109/TEC.2006.888031

Hermawan, I. B., Ashari, M., & Riawan, D. C. (2022). PV Farm Ancillary Function for Voltage Sag Mitigation Caused by Inrush Current of an Induction Motor. International Journal of Intelligent Engineering and Systems, 15(6), 325–336. https://doi.org/10.22266/ijies2022.1231.31

Mickey, K. (2016). “Process Control A Practical Approach, Second edition.”, Chichester, West Sussex, United Kingdom: John Wiley &Sons Inc.

Suwito, S., Ashari, M., Rivai, M., & Mustaghfirin, M. A. (2022). Enhancement of Photovoltaic Pressurized Irrigation System Based on Hybrid Kalman Fuzzy. International Journal of Intelligent Engineering and Systems, 15(2), 426–440. https://doi.org/10.22266/ijies2022.0430.39

Author Biographies

Ashari Mochamad, Institut Teknologi Sepuluh Nopember

Mochamad Ashari received the M.Eng. and Ph.D. degrees from Curtin University, Australia in 1997 and 2001, respectively. He is currently a Professor in the Department of Electrical Engineering and informatics Technology (Electics), Institut Teknologi Sepuluh Nopember Surabaya (ITS), Surabaya, Indonesia. His research interest are in power system operation, power electronics, artificial intelligence in power system, power system control, optimization of power systems, distributed generation, microgrid simulation power quality and renewable energy.

Dedet Candra Riawan, Institut Teknologi Sepuluh Nopember

Dedet Candra Riawan received the Bachelor’s Degree in Electrical Engineering from Sepuluh Nopember Institute of Technology (ITS), Indonesia, in 1999 and joined ITS as lecturer in 2000. In 2006, he receives the Master’s degree of Engineering from Curtin University of Technology, Australia. And receive the PhD in 2009 from the same university. His interest in research is in power electronics and its application in renewable energy

Download this PDF file
PDF
Statistic
Read Counter : 11 Download : 6

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License