Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 3, August 2023
  4. Articles

Issue

Vol. 8, No. 3, August 2023

Issue Published : Aug 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Fish swarmed Fuzzy Time Series for Photovoltaic’s Forecasting in Microgrid

https://doi.org/10.22219/kinetik.v8i3.1730
Fitri
State Polytechnic of Malang
Aripriharta
State University of Malang
Yuni Rahmawati
State University of Malang

Corresponding Author(s) : Fitri

fitripolinema@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 3, August 2023
Article Published : Aug 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Forecasting irradiation and temperature is important for designing photovoltaic systems because these two factors have a significant impact on system performance. Irradiation refers to the amount of solar radiation that reaches the earth's surface, and directly affects the amount of energy that can be generated by a photovoltaic system. Therefore, accurate irradiation forecasting is essential for estimating the amount of energy a photovoltaic system can produce, and can assist in determining the appropriate system size, configuration, and orientation to maximize energy output. Temperature also plays an important role in the performance of a photovoltaic system. With increasing temperature, the efficiency of the solar cell decreases, which means that the energy output of the system also decreases. Therefore, accurate temperature forecasts are essential for estimating system energy output, selecting suitable materials, and designing effective cooling systems to prevent overheating. In summary, forecasting irradiation and temperature is important for designing photovoltaic systems as it helps in determining suitable system size, configuration, orientation, material selection, and cooling system, which ultimately results in higher energy output and better system performance. In recent decades, many forecasting models have been built on the idea of fuzzy time series. There are several forecasting models proposed by integrating fuzzy time series with heuristic or evolutionary algorithms such as genetic algorithms, but the results are not satisfactory. To improve forecasting accuracy, a new hybrid forecasting model combines fish swarm optimization algorithm with fuzzy time series. The results of irradiance prediction/forecasting with the smallest error are using the type of Fuzzy Time Series prediction model optimized with FSOA with RMSE is 0.83832.

Keywords

fish swarm optimization algorithm fuzzy time series forecasting PV's irradiance PV's temperature
Fitri, Aripriharta, & Rahmawati, Y. (2023). Fish swarmed Fuzzy Time Series for Photovoltaic’s Forecasting in Microgrid. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(3). https://doi.org/10.22219/kinetik.v8i3.1730
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Kun-Huang Huarng. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems 2001; 123(3), 387-394. https://doi.org/10.1016/S0165-0114(00)00057-9
  2. Erol Egrioglu, Cagdas Hakan Aladag, Ufuk Yolcu, Vedide R. Uslu, Murat A. Basaran. Finding an optimal interval length in high order fuzzy time series. Expert Systems with Applications. 2010; Vol 37 (7). https://doi.org/10.1016/j.eswa.2009.12.006
  3. Chen, S and Chung, N. Forecasting Enrollments of Students by Using Fuzzy Time Series and Genetic Algorithms. Information and Management Sciences. 2006; 17, (3), 1-17. http://dx.doi.org/10.1002/0470024569.ch1
  4. Lee, L.S. MultiCrossover Genetic Algorithms for Combinatorial Optimisation Problems. University of Southampton, United Kingdom. 2006.
  5. I-Hong Kuo, Shi-Jinn Horng, Tzong-Wann Kao, Tsung-Lieh Lin, Cheng-Ling Lee, Yi Pan. An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with Applications. 2009; Vol 36(3). https://doi.org/10.1016/j.eswa.2008.07.043
  6. R.J. Kuo, S.Y. Hong, Y.C. Huang. Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection. Applied Mathematical Modelling. 2010. Vol 34(2). https://doi.org/10.1016/j.apm.2010.03.033
  7. Kuang Yu Huang. A hybrid particle swarm optimization approach for clustering and classification of datasets. Knowledge-Based Systems. 2011. Vol 24(3). https://doi.org/10.1016/j.knosys.2010.12.003
  8. Cagdas Hakan Aladag, Erol Egrioglu, Cem Kadilar. Improvement in Forecasting Accuracy Using the Hybrid Model of ARFIMA and Feed Forward Neural Network. American Journal of Intelligent Systems. 2012; 2(2): 12-17.
  9. Cheng, C.-H., Chen, T., Teoh, H., & Chiang, C. Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert systems with applications. 2008;34.2 , 1126-1132. https://doi.org/10.1016/j.eswa.2006.12.021
  10. E. Egrioglu, C.H. Aladag, U. Yolcu, V.R. Uslu, N.A. Erilli. Fuzzy time series forecasting method based on Gustafson–Kessel fuzzy clustering. Expert Systems with Applications. 2011; 30(8). https://doi.org/10.1016/j.eswa.2011.02.052
  11. Yolcu, U., Egrioglu, E., & Aladag, C. H. A new linear & nonlinear artificial neural network model for time series forecasting. Decision Support Systems, 2013; 54(3), 1340–1347. https://doi.org/10.1016/j.dss.2012.12.006
  12. Musaed Alrashidi and Saifur Rahman, Short-term photovoltaic power production forecasting based on novel hybrid data-driven models. Journal of Big Data, 2023;10:26. https://doi.org/10.1186/s40537-023-00706-7
  13. Fran Sérgio Lobato, Valder Steffen Jr. Fish Swarm Optimization Algorithm Applied to Engineering System Design. Latin American Journal of Solids and Structures. 2014. 11, 143-156. https://doi.org/10.1590/S1679-78252014000100009
  14. Bogdan Oancea, Richard Pospíšil, Marius Nicolae Jula and Cosmin-Ionuț Imbrișcă. Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods. Mathematics 2021; 9, 2517. https://doi.org/10.3390/math9192517
  15. Rifandi, Angga Dwi Apria, Budi Darma Setiawan, Tibyani. Optimasi Interval Fuzzy Time Series Menggunakan Particle Swarm Optimization pada Peramalan Permintaan Darah : Studi Kasus Unit Transfusi Darah Cabang - PMI Kota Malang. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X, Vol. 2, No. 7, Juli 2018, pg. 2770-2779.
  16. Sari, Ade Puspita. Optimasi Interval Fuzzy Time Series menggunakan Particle Swarm Optimization Untuk Memprediksi Kualitas Udara Di Kota Pekanbaru. Skripsi thesis 2019, Universitas Islam Negeri Sultan Syarif Kasim Riau.
  17. Bahrudin, Muhammad Irfan . Optimisasi Daya Photovoltaic pada kondisi Partially Shaded dengan Maximum Power Point Tracker (MPPT) Menggunakan Metode Particle Swarm Optimization (PSO) Double Diode Model. Institut Teknologi Sepuluh Nopember. 2018
  18. Tyas, F. A., Setianama, M., Fadilatul Fajriyah, R., & Ilham, A. (2021). Implementation of Particle Swarm Optimization (PSO) to Improve Neural Network Performance in Univariate Time Series Prediction. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(4). https://doi.org/10.22219/kinetik.v6i4.1330
  19. Noviandi, N., & Ilham, A. (2020). Optimization Fuzzy Inference System based Particle Swarm Optimization for Onset Prediction of the Rainy Season. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(1). https://doi.org/10.22219/kinetik.v5i1.985
  20. Allen J. Wood, Power Generation Operation and Control, second edisi tahun 1996
  21. Frisk, M. (2017). Simulation and optimization of a hybrid renewable energy system for appli- cation on a cuban farm
  22. Saiprasad, N., Kalam, A., and Zayegh, A. (2018). Comparative study of optimization of hres using homer and ihoga software
  23. Akhter MN, Mekhilef S, Mokhlis H, Shah NM.(2019). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew Power Gener. 2019;13(7):1009–23. https://doi.org/10.1049/iet-rpg.2018.5649
  24. Ahmed R, Sreeram V, Mishra Y, Arif D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew Sustain Energy Rev. 2020;124:109792. https://doi.org/10.1016/j.rser.2020.109792
  25. Sharadga H, Hajimirza S, Balog RS.(2020). Time series forecasting of solar power generation for large-scale photovoltaic plants. Renew Energy. 2020;150:797–807. https://doi.org/10.1016/j.renene.2019.12.131
  26. Konstantinou M, Peratikou S, Charalambides AG.(2021). Solar photovoltaic forecasting of power outputusing LSTM net-works. Atmosphere. 2021;12(1):124. https://doi.org/10.3390/atmos12010124
  27. Miraftabzadeh SM, Longo M, Foiadelli F.(2020. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020.p. 1–6. https://doi.org/10.1109/SEST48500.2020.9203481
Read More

References


Kun-Huang Huarng. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems 2001; 123(3), 387-394. https://doi.org/10.1016/S0165-0114(00)00057-9

Erol Egrioglu, Cagdas Hakan Aladag, Ufuk Yolcu, Vedide R. Uslu, Murat A. Basaran. Finding an optimal interval length in high order fuzzy time series. Expert Systems with Applications. 2010; Vol 37 (7). https://doi.org/10.1016/j.eswa.2009.12.006

Chen, S and Chung, N. Forecasting Enrollments of Students by Using Fuzzy Time Series and Genetic Algorithms. Information and Management Sciences. 2006; 17, (3), 1-17. http://dx.doi.org/10.1002/0470024569.ch1

Lee, L.S. MultiCrossover Genetic Algorithms for Combinatorial Optimisation Problems. University of Southampton, United Kingdom. 2006.

I-Hong Kuo, Shi-Jinn Horng, Tzong-Wann Kao, Tsung-Lieh Lin, Cheng-Ling Lee, Yi Pan. An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with Applications. 2009; Vol 36(3). https://doi.org/10.1016/j.eswa.2008.07.043

R.J. Kuo, S.Y. Hong, Y.C. Huang. Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection. Applied Mathematical Modelling. 2010. Vol 34(2). https://doi.org/10.1016/j.apm.2010.03.033

Kuang Yu Huang. A hybrid particle swarm optimization approach for clustering and classification of datasets. Knowledge-Based Systems. 2011. Vol 24(3). https://doi.org/10.1016/j.knosys.2010.12.003

Cagdas Hakan Aladag, Erol Egrioglu, Cem Kadilar. Improvement in Forecasting Accuracy Using the Hybrid Model of ARFIMA and Feed Forward Neural Network. American Journal of Intelligent Systems. 2012; 2(2): 12-17.

Cheng, C.-H., Chen, T., Teoh, H., & Chiang, C. Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert systems with applications. 2008;34.2 , 1126-1132. https://doi.org/10.1016/j.eswa.2006.12.021

E. Egrioglu, C.H. Aladag, U. Yolcu, V.R. Uslu, N.A. Erilli. Fuzzy time series forecasting method based on Gustafson–Kessel fuzzy clustering. Expert Systems with Applications. 2011; 30(8). https://doi.org/10.1016/j.eswa.2011.02.052

Yolcu, U., Egrioglu, E., & Aladag, C. H. A new linear & nonlinear artificial neural network model for time series forecasting. Decision Support Systems, 2013; 54(3), 1340–1347. https://doi.org/10.1016/j.dss.2012.12.006

Musaed Alrashidi and Saifur Rahman, Short-term photovoltaic power production forecasting based on novel hybrid data-driven models. Journal of Big Data, 2023;10:26. https://doi.org/10.1186/s40537-023-00706-7

Fran Sérgio Lobato, Valder Steffen Jr. Fish Swarm Optimization Algorithm Applied to Engineering System Design. Latin American Journal of Solids and Structures. 2014. 11, 143-156. https://doi.org/10.1590/S1679-78252014000100009

Bogdan Oancea, Richard Pospíšil, Marius Nicolae Jula and Cosmin-Ionuț Imbrișcă. Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods. Mathematics 2021; 9, 2517. https://doi.org/10.3390/math9192517

Rifandi, Angga Dwi Apria, Budi Darma Setiawan, Tibyani. Optimasi Interval Fuzzy Time Series Menggunakan Particle Swarm Optimization pada Peramalan Permintaan Darah : Studi Kasus Unit Transfusi Darah Cabang - PMI Kota Malang. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN: 2548-964X, Vol. 2, No. 7, Juli 2018, pg. 2770-2779.

Sari, Ade Puspita. Optimasi Interval Fuzzy Time Series menggunakan Particle Swarm Optimization Untuk Memprediksi Kualitas Udara Di Kota Pekanbaru. Skripsi thesis 2019, Universitas Islam Negeri Sultan Syarif Kasim Riau.

Bahrudin, Muhammad Irfan . Optimisasi Daya Photovoltaic pada kondisi Partially Shaded dengan Maximum Power Point Tracker (MPPT) Menggunakan Metode Particle Swarm Optimization (PSO) Double Diode Model. Institut Teknologi Sepuluh Nopember. 2018

Tyas, F. A., Setianama, M., Fadilatul Fajriyah, R., & Ilham, A. (2021). Implementation of Particle Swarm Optimization (PSO) to Improve Neural Network Performance in Univariate Time Series Prediction. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(4). https://doi.org/10.22219/kinetik.v6i4.1330

Noviandi, N., & Ilham, A. (2020). Optimization Fuzzy Inference System based Particle Swarm Optimization for Onset Prediction of the Rainy Season. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(1). https://doi.org/10.22219/kinetik.v5i1.985

Allen J. Wood, Power Generation Operation and Control, second edisi tahun 1996

Frisk, M. (2017). Simulation and optimization of a hybrid renewable energy system for appli- cation on a cuban farm

Saiprasad, N., Kalam, A., and Zayegh, A. (2018). Comparative study of optimization of hres using homer and ihoga software

Akhter MN, Mekhilef S, Mokhlis H, Shah NM.(2019). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew Power Gener. 2019;13(7):1009–23. https://doi.org/10.1049/iet-rpg.2018.5649

Ahmed R, Sreeram V, Mishra Y, Arif D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew Sustain Energy Rev. 2020;124:109792. https://doi.org/10.1016/j.rser.2020.109792

Sharadga H, Hajimirza S, Balog RS.(2020). Time series forecasting of solar power generation for large-scale photovoltaic plants. Renew Energy. 2020;150:797–807. https://doi.org/10.1016/j.renene.2019.12.131

Konstantinou M, Peratikou S, Charalambides AG.(2021). Solar photovoltaic forecasting of power outputusing LSTM net-works. Atmosphere. 2021;12(1):124. https://doi.org/10.3390/atmos12010124

Miraftabzadeh SM, Longo M, Foiadelli F.(2020. A-day-ahead photovoltaic power prediction based on long short term memory algorithm. In: SEST 2020—3rd international conference on smart energy systems and technologies. 2020.p. 1–6. https://doi.org/10.1109/SEST48500.2020.9203481

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 9 Download : 7

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License