Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 3, August 2023
  4. Articles

Issue

Vol. 8, No. 3, August 2023

Issue Published : Aug 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Neural Network-Based Image Processing for Tomato Harvesting Robot

https://doi.org/10.22219/kinetik.v8i3.1723
Yurni Oktarina
Politeknik Negeri Sriwijaya
Ronald Sukwadi
Universitas Katolik Indonesia Atma Jaya
Marsellinus Bachtiar Wahju
Universitas Katolik Indonesia Atma Jaya

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 3, August 2023
Article Published : Aug 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Agriculture is one of the areas that can benefit from robotics technology, as it faces issues such as a shortage of human labor and access to less arid terrain. Harvesting is an important step in agriculture since workers are required to work around the clock. The red ripe tomatoes should go to the nearest market, while the greenest should go to the farthest market. Harvesting robots can benefit from Neural Network-based image processing to ensure robust detection. The vision system should assist the mobility system in moving precisely and at the appropriate speed. The design and implementation of a harvesting robot are described in this study. The efficiency of the proposed strategy is tested by picking red-ripened tomatoes while leaving the yellowish ones out of the experimental test bed. The experiment results demonstrate that the effectiveness of the proposed method in harvesting the right tomatoes is 80%.

Keywords

Arm robot manipulators harvesting robots agriculture robots neural network
Oktarina, Y., Sukwadi, R., & Wahju, M. B. (2023). Neural Network-Based Image Processing for Tomato Harvesting Robot . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(3). https://doi.org/10.22219/kinetik.v8i3.1723
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. M. Stoelen et al., "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. https://doi.org/10.3920/978-90-8686-814-8
  2. T. Dewi, S. Nurmaini, P., Risma, and Y. Oktarina, Y., “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), Vol. 10, No 2, pp. 1376-1386, 2020. http://doi.org/10.11591/ijece.v10i2.pp1376-1386
  3. T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, “Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGIA Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013
  4. T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161
  5. C. Wang, Y. Tang, X. Zou, W. SiTu, and W. Feng, "A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot," Optik, Vol. 131, pp. 626-631, 2017. https://doi.org/10.1016/j.ijleo.2016.11.177.
  6. C.W. Bac, J. Hemming, and E.J. Van Henten, “Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper,” Computers and Electronics in Agriculture, Vol. 96, pp. 148-162, 2013. https://doi.org/10.1016/j.compag.2013.05.004
  7. N. M. Syahrian, P. Risma, and T. Dewi, “Vision-Based Pipe Monitoring Robot for Crack Detection using Canny Edge Detection Method as an Image Processing Technique,” Kinetik: Game Technology, Information System, Computer Network, Computing Electronics, and Control, Vol. 2, No. 4, pp. 243-250, 2017. https://doi.org/10.22219/kinetik.v2i4.243
  8. M.D. Yusuf, RD. Kusumanto, Y. Oktarina, T. Dewi, and P. Risma, “Blob Analysis for Fruit Recognition and Detection,” Computer Engineering and Applications, Vol 7 No 1 pp. 23-32, 2018. https://doi.org/10.18495/comengapp.v7i1.237
  9. T. Dewi, P. Risma, Y. Oktarina and S. Muslimin, "Visual Servoing Design and Control for Agriculture Robot; a Review," 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209
  10. H. Gharakhani, J. A. Thomasson, and Y. Lu, "An end-effector for robotic cotton harvesting," Smart Agricultural Technology, Vol. 2, p. 100043, 2022. https://doi.org/10.1016/j.atech.2022.100043.
  11. T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003
  12. Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010
  13. J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911
  14. L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021
  15. Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030
  16. T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020. https://doi.org/10.11591/eei.v9i4.2353
  17. A. Nasiri, A. Taheri-Garavand, and Y. Zhang Image-based deep learning automated sorting of date fruit, Postharvest Biology and Technology, Vol. 153, pp. 133-141, 2019. https://doi.org/10.1016/j.postharvbio.2019.04.003.
  18. M. Fashi, L. Naderloo, and H. Javadikia, The relationship between the appearance of pomegranate fruit and color and size of arils based on image processing, Postharvest Biology and Technology, Vol. 154, pp. 52-57, 2019. https://doi.org/10.1016/j.postharvbio.2019.04.017.
  19. J. Jhawar, “Orange Sorting by Applying Pattern Recognition on Colour Image,” Procedia Computer Science, vol. 78, pp. 691–697, December 2016. https://doi.org/10.1016/j.procs.2016.02.118
  20. L. Fu, J. Duan, X. Zou, G. Lin, S. Song, B. Ji, and Z. Yang, Banana detection based on color and texture features in the natural environment, Computers and Electronics in Agriculture, Vol. 167, p. 105057, 2019. https://doi.org/10.1016/j.compag.2019.105057.
  21. U. Dorj, M. Lee, and S. Yun, An yield estimation in citrus orchards via fruit detection and counting using image processing, Computers and Electronics in Agriculture, Vol. 140, pp. 103-112, 2017. https://doi.org/10.1016/j.compag.2017.05.019.
  22. L. Fu, Z. Liu, Y. Majeed, and Y. Cui, “Kiwifruit Yield Estimation using Processing by an Android Mobile Phone,” IFAC Conference Paper Archive, vol. 51, pp. 185–190, 2018. https://doi.org/10.1016/j.ifacol.2018.08.137
  23. K. Tan, W. Suk, H. Gan, and S. Wang, “Recognising Blueberry Fruit of Different Maturity Using Histogram Oriented Gradients and Colour Features in Outdoor Scenes,” Biosystems Engineering, vol. 176, pp. 59–72, 2018. https://doi.org/10.1016/j.biosystemseng.2018.08.011
  24. A. Septiarini, H. Hamdani, H. R. Hatta, and K. Anwar, "Automatic Image Segmentation of Oil Palm Fruits by Applying the Contour-Based Approach," Scientia Horticulturae, 2019. https://doi.org/10.1016/j.scienta.2019.108939.
  25. M. H. Malik, T. Zhang, H. Li, M. Zhang, S. Shabbir, and A. Saeed, "Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm," IFAC-PapersOnLine, Vol. 51, No. 17, pp. 431-436, 2018. https://doi.org/10.1016/j.ifacol.2018.08.183.
  26. L. F. S. Pereira, S. Barbon, N. A. Valous, and D. F. Barbin, Predicting the ripening of papaya fruit with digital imaging and random forests, Computers and Electronics in Agriculture, Vol. 145, pp. 76-82, 2018. https://doi.org/10.1016/j.compag.2017.12.029.
  27. T. Anandhakrishnan, S.M. Jaisakthi, Deep Convolutional Neural Networks for image based tomato leaf disease detection, Sustainable Chemistry and Pharmacy, Vol. 30, p. 100793, 2022. https://doi.org/10.1016/j.scp.2022.100793.
  28. M. Zaborowicz, P. Boniecki, K. Koszela, A. Przybylak, and J. Przybył, Application of neural image analysis in evaluating the quality of greenhouse tomatoes, Scientia Horticulturae, Vol. 218, pp. 222-229, 2017, https://doi.org/10.1016/j.scienta.2017.02.001.
  29. T. Zeng, S. Li, Q. Song, F. Zhong, and X. Wei, Lightweight tomato real-time detection method based on improved YOLO and mobile deployment, Computers and Electronics in Agriculture, Vol. 205, p. 107625, 2023. https://doi.org/10.1016/j.compag.2023.107625.
  30. J. Qi, X. Liu, K. Liu, F. Xu, H. Guo, X. Tian, M. Li, Z. Bao, Y. Li, An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease, Computers and Electronics in Agriculture, Vol. 194, p. 106780, 2022. https://doi.org/10.1016/j.compag.2022.106780.
  31. Q. Rong, C. Hu, X. Hu, M. Xu, Picking point recognition for ripe tomatoes using semantic segmentation and morphological processing, Computers and Electronics in Agriculture, Vol. 210, p. 107923, 2023. https://doi.org/10.1016/j.compag.2023.107923.
Read More

References


M. Stoelen et al., "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. https://doi.org/10.3920/978-90-8686-814-8

T. Dewi, S. Nurmaini, P., Risma, and Y. Oktarina, Y., “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), Vol. 10, No 2, pp. 1376-1386, 2020. http://doi.org/10.11591/ijece.v10i2.pp1376-1386

T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, “Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGIA Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013

T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161

C. Wang, Y. Tang, X. Zou, W. SiTu, and W. Feng, "A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot," Optik, Vol. 131, pp. 626-631, 2017. https://doi.org/10.1016/j.ijleo.2016.11.177.

C.W. Bac, J. Hemming, and E.J. Van Henten, “Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper,” Computers and Electronics in Agriculture, Vol. 96, pp. 148-162, 2013. https://doi.org/10.1016/j.compag.2013.05.004

N. M. Syahrian, P. Risma, and T. Dewi, “Vision-Based Pipe Monitoring Robot for Crack Detection using Canny Edge Detection Method as an Image Processing Technique,” Kinetik: Game Technology, Information System, Computer Network, Computing Electronics, and Control, Vol. 2, No. 4, pp. 243-250, 2017. https://doi.org/10.22219/kinetik.v2i4.243

M.D. Yusuf, RD. Kusumanto, Y. Oktarina, T. Dewi, and P. Risma, “Blob Analysis for Fruit Recognition and Detection,” Computer Engineering and Applications, Vol 7 No 1 pp. 23-32, 2018. https://doi.org/10.18495/comengapp.v7i1.237

T. Dewi, P. Risma, Y. Oktarina and S. Muslimin, "Visual Servoing Design and Control for Agriculture Robot; a Review," 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal, Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209

H. Gharakhani, J. A. Thomasson, and Y. Lu, "An end-effector for robotic cotton harvesting," Smart Agricultural Technology, Vol. 2, p. 100043, 2022. https://doi.org/10.1016/j.atech.2022.100043.

T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003

Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010

J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911

L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021

Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030

T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020. https://doi.org/10.11591/eei.v9i4.2353

A. Nasiri, A. Taheri-Garavand, and Y. Zhang Image-based deep learning automated sorting of date fruit, Postharvest Biology and Technology, Vol. 153, pp. 133-141, 2019. https://doi.org/10.1016/j.postharvbio.2019.04.003.

M. Fashi, L. Naderloo, and H. Javadikia, The relationship between the appearance of pomegranate fruit and color and size of arils based on image processing, Postharvest Biology and Technology, Vol. 154, pp. 52-57, 2019. https://doi.org/10.1016/j.postharvbio.2019.04.017.

J. Jhawar, “Orange Sorting by Applying Pattern Recognition on Colour Image,” Procedia Computer Science, vol. 78, pp. 691–697, December 2016. https://doi.org/10.1016/j.procs.2016.02.118

L. Fu, J. Duan, X. Zou, G. Lin, S. Song, B. Ji, and Z. Yang, Banana detection based on color and texture features in the natural environment, Computers and Electronics in Agriculture, Vol. 167, p. 105057, 2019. https://doi.org/10.1016/j.compag.2019.105057.

U. Dorj, M. Lee, and S. Yun, An yield estimation in citrus orchards via fruit detection and counting using image processing, Computers and Electronics in Agriculture, Vol. 140, pp. 103-112, 2017. https://doi.org/10.1016/j.compag.2017.05.019.

L. Fu, Z. Liu, Y. Majeed, and Y. Cui, “Kiwifruit Yield Estimation using Processing by an Android Mobile Phone,” IFAC Conference Paper Archive, vol. 51, pp. 185–190, 2018. https://doi.org/10.1016/j.ifacol.2018.08.137

K. Tan, W. Suk, H. Gan, and S. Wang, “Recognising Blueberry Fruit of Different Maturity Using Histogram Oriented Gradients and Colour Features in Outdoor Scenes,” Biosystems Engineering, vol. 176, pp. 59–72, 2018. https://doi.org/10.1016/j.biosystemseng.2018.08.011

A. Septiarini, H. Hamdani, H. R. Hatta, and K. Anwar, "Automatic Image Segmentation of Oil Palm Fruits by Applying the Contour-Based Approach," Scientia Horticulturae, 2019. https://doi.org/10.1016/j.scienta.2019.108939.

M. H. Malik, T. Zhang, H. Li, M. Zhang, S. Shabbir, and A. Saeed, "Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm," IFAC-PapersOnLine, Vol. 51, No. 17, pp. 431-436, 2018. https://doi.org/10.1016/j.ifacol.2018.08.183.

L. F. S. Pereira, S. Barbon, N. A. Valous, and D. F. Barbin, Predicting the ripening of papaya fruit with digital imaging and random forests, Computers and Electronics in Agriculture, Vol. 145, pp. 76-82, 2018. https://doi.org/10.1016/j.compag.2017.12.029.

T. Anandhakrishnan, S.M. Jaisakthi, Deep Convolutional Neural Networks for image based tomato leaf disease detection, Sustainable Chemistry and Pharmacy, Vol. 30, p. 100793, 2022. https://doi.org/10.1016/j.scp.2022.100793.

M. Zaborowicz, P. Boniecki, K. Koszela, A. Przybylak, and J. Przybył, Application of neural image analysis in evaluating the quality of greenhouse tomatoes, Scientia Horticulturae, Vol. 218, pp. 222-229, 2017, https://doi.org/10.1016/j.scienta.2017.02.001.

T. Zeng, S. Li, Q. Song, F. Zhong, and X. Wei, Lightweight tomato real-time detection method based on improved YOLO and mobile deployment, Computers and Electronics in Agriculture, Vol. 205, p. 107625, 2023. https://doi.org/10.1016/j.compag.2023.107625.

J. Qi, X. Liu, K. Liu, F. Xu, H. Guo, X. Tian, M. Li, Z. Bao, Y. Li, An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease, Computers and Electronics in Agriculture, Vol. 194, p. 106780, 2022. https://doi.org/10.1016/j.compag.2022.106780.

Q. Rong, C. Hu, X. Hu, M. Xu, Picking point recognition for ripe tomatoes using semantic segmentation and morphological processing, Computers and Electronics in Agriculture, Vol. 210, p. 107923, 2023. https://doi.org/10.1016/j.compag.2023.107923.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 12 Download : 8

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License