Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 3, August 2023
  4. Articles

Issue

Vol. 8, No. 3, August 2023

Issue Published : Aug 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Design and Performance of Solar-Powered Surveillance Robot for Agriculture Application

https://doi.org/10.22219/kinetik.v8i3.1722
Tresna Dewi
Politeknik Negeri Sriwijaya
http://orcid.org/0000-0003-0239-1538
Ronald Sukwadi
Universitas Katolik Indonesia Atma Jaya
Marsellinus Bachtiar Wahju
Universitas Katolik Indonesia Atma Jaya

Corresponding Author(s) : Tresna Dewi

tresna_dewi@polsri.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 3, August 2023
Article Published : Aug 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Agriculture can benefit from robotics technology to overcome the drawback of limited human labor working in this sector. One of the robot applications in agriculture is a surveillance robot to monitor the condition. This paper describes a surveillance robot that is powered by a capacitor bank charged by a mini solar panel. The solar-powered robot is well-suited for deployment in open agricultural areas in Indonesia, where the irradiance is high. This potential is excellent for generating electricity and charging electric vehicles, such as those used in agriculture. The surveillance robot developed and tested in this study has been successfully deployed in an agriculture-like setting with all-terrain contours and the capacity to avoid obstacles. During high irradiance sunny weather, the shortest charging time was 2 hours. Hence, the proposed technology is effective for designing a surveillance robot for agricultural applications.

Keywords

Agriculture robots Solar Powered robots Surveillance Robots Solar Energy Renewable Energy
Dewi, T., Sukwadi, R. ., & Wahju, M. B. (2023). Design and Performance of Solar-Powered Surveillance Robot for Agriculture Application . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(3). https://doi.org/10.22219/kinetik.v8i3.1722
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. IRENA, Renewable Energy Prospects: Indonesia, a REmap analysis, International Renewable Energy Agency (IRENA), Abu Dhabi, 2017.
  2. DEN, “Outlook Energy Indonesia 2019,” Secretariat General National Energy Council, ISSN 2527-3000.
  3. Sarwono, T. Dewi, and RD Kusumanto, "Geographical Location Effects on PV Panel Output - Comparison Between Highland and Lowland Installation in South Sumatra, Indonesia," Technology Reports of Kansai University, Vol. 63, No. 02, pp. 7229-7243, 2021. ISSN: 04532198.
  4. K. Junaedi, T. Dewi, and M. S. Yusi, "The Potential Overview of PV System Installation at the Quarry Open Pit Mine PT. Bukit Asam, Tbk Tanjung Enim," Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 1, pp. 41-50, 2021. https://doi.org/10.22219/kinetik.v6i1.1148.
  5. Y. Mases, T. Dewi and Rusdianasari, "Solar Radiation Effect on Solar Powered Pump Performance of an Automatic Sprinkler System," 2021 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2021, pp. 246-250. https://doi.org/10.1109/IEIT53149.2021.9587360
  6. M. Alam, T. Dewi and Rusdianasari, "Performance Optimization of Solar Powered Pump for Irrigation in Tanjung Raja, Indonesia," 2022 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2022, pp. 196-201. https://doi.org/10.1109/IEIT56384.2022.9967873
  7. E. V. Novaldo, T. Dewi and Rusdianasari, "Solar Energy as an Alternative Energy Source in Hydroponic Agriculture: A Pilot Study," 2022 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2022, pp. 202-205. https://doi.org/10.1109/IEIT56384.2022.9967806
  8. T. Dewi, P. Risma, Y. Oktarina, M.T. Roseno, H.M. Yudha, A. S. Handayani, and Y. Wijanarko, “A Survey on Solar Cell; The Role of Solar Cell in Robotics and Robotic Application in Solar Cell industry,” in Proceeding Forum in Research, Science, and Technology (FIRST), 2016. Retrieved from http://eprints.polsri.ac.id/3576/3/C4.pdf.
  9. T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209
  10. H. N. Azmi, S. S. H. Hajjaj, K. R. Gsangaya, M. T. H. Sultan, M. F. Mail, and L. S. Hua, Design and fabrication of an agricultural robot for crop seeding, Materials Today: Proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.03.191.
  11. P. Kumar, and G. Ashok, Design and fabrication of smart seed sowing robot, Materials Today: Proceedings, Vol. 39, Part 1, pp. 354-358, 2021. https://doi.org/10.1016/j.matpr.2020.07.432.
  12. H. Hejazipoor, J. Massah, M. Soryani, K. A. Vakilian, and G. Chegini, An intelligent spraying robot based on plant bulk volume, Computers and Electronics in Agriculture, Vol. 180, p. 105859, 2021. https://doi.org/10.1016/j.compag.2020.105859
  13. T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003
  14. T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161.
  15. M. Stoelen et al., "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. https://doi.org/10.3920/978-90-8686-814-8
  16. H. Gharakhani, J. A. Thomasson, and Y. Lu, "An end-effector for robotic cotton harvesting," Smart Agricultural Technology, Vol. 2, p. 100043, 2022. https://doi.org/10.1016/j.atech.2022.100043.
  17. Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010
  18. J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911
  19. L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021
  20. Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030
  21. L. Fu, J. Duan, X. Zou, G. Lin, S. Song, B. Ji, and Z. Yang, Banana detection based on color and texture features in the natural environment, Computers and Electronics in Agriculture, Vol. 167, p. 105057, 2019. https://doi.org/10.1016/j.compag.2019.105057.
  22. U. Dorj, M. Lee, and S. Yun, An yield estimation in citrus orchards via fruit detection and counting using image processing, Computers and Electronics in Agriculture, Vol. 140, pp. 103-112, 2017. https://doi.org/10.1016/j.compag.2017.05.019.
  23. M. H. Malik, T. Zhang, H. Li, M. Zhang, S. Shabbir, and A. Saeed, "Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm," IFAC-PapersOnLine, Vol. 51, No. 17, pp. 431-436, 2018. https://doi.org/10.1016/j.ifacol.2018.08.183.
  24. L. F. S. Pereira, S. Barbon, N. A. Valous, and D. F. Barbin, Predicting the ripening of papaya fruit with digital imaging and random forests, Computers and Electronics in Agriculture, Vol. 145, pp. 76-82, 2018. https://doi.org/10.1016/j.compag.2017.12.029.
  25. T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGIA Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013.
  26. T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020, DOI: 10.11591/eei.v9i4.2353
  27. J. Jhawar, “Orange Sorting by Applying Pattern Recognition on Colour Image,” Procedia Computer Science, vol. 78, pp. 691–697, December 2016. https://doi.org/10.1016/j.procs.2016.02.118
  28. J. Azeta, C.A. Bolu, D. Hinvi, A.A. Abioye, H. Boyo, P. Anakhu, P. Onwordi, An Android Based Mobile Robot for Monitoring and Surveillance, Procedia Manufacturing, Vol. 35, pp.1129-1134, 2019. https://doi.org/10.1016/j.promfg.2019.06.066
  29. T. Dewi, P. Risma, Y. Oktarina, RD Kusumanto, Motion control analysis of a spherical robot as a surveillance robot, Journal of Physics: Conference Series, Vol. 1167, No. 1, p. 012004, 2019. https://doi.org/10.1088/1742-6596/1167/1/012004
  30. F. Septiarini, T. Dewi and Rusdianasari, Design of a solar-powered mobile manipulator using fuzzy logic controller of agriculture application, International Journal of Computational Vision and Robotics, Inderscience, Vol. 12, No. 5, pp. 506-531, 2022. https://doi.org/10.1504/IJCVR.2022.125356.
  31. S. Jena, P. K. Sahu, and M. M. Sahu, 4 - Energy storage in capacitor banks, Editor(s): Prabhansu, Nayan Kumar, Emerging Trends in Energy Storage Systems and Industrial Applications, Academic Press, pp. 79-112, 2023. https://doi.org/10.1016/B978-0-323-90521-3.00015-6
Read More

References


IRENA, Renewable Energy Prospects: Indonesia, a REmap analysis, International Renewable Energy Agency (IRENA), Abu Dhabi, 2017.

DEN, “Outlook Energy Indonesia 2019,” Secretariat General National Energy Council, ISSN 2527-3000.

Sarwono, T. Dewi, and RD Kusumanto, "Geographical Location Effects on PV Panel Output - Comparison Between Highland and Lowland Installation in South Sumatra, Indonesia," Technology Reports of Kansai University, Vol. 63, No. 02, pp. 7229-7243, 2021. ISSN: 04532198.

K. Junaedi, T. Dewi, and M. S. Yusi, "The Potential Overview of PV System Installation at the Quarry Open Pit Mine PT. Bukit Asam, Tbk Tanjung Enim," Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 1, pp. 41-50, 2021. https://doi.org/10.22219/kinetik.v6i1.1148.

Y. Mases, T. Dewi and Rusdianasari, "Solar Radiation Effect on Solar Powered Pump Performance of an Automatic Sprinkler System," 2021 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2021, pp. 246-250. https://doi.org/10.1109/IEIT53149.2021.9587360

M. Alam, T. Dewi and Rusdianasari, "Performance Optimization of Solar Powered Pump for Irrigation in Tanjung Raja, Indonesia," 2022 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2022, pp. 196-201. https://doi.org/10.1109/IEIT56384.2022.9967873

E. V. Novaldo, T. Dewi and Rusdianasari, "Solar Energy as an Alternative Energy Source in Hydroponic Agriculture: A Pilot Study," 2022 International Conference on Electrical and Information Technology (IEIT), Malang, Indonesia, 2022, pp. 202-205. https://doi.org/10.1109/IEIT56384.2022.9967806

T. Dewi, P. Risma, Y. Oktarina, M.T. Roseno, H.M. Yudha, A. S. Handayani, and Y. Wijanarko, “A Survey on Solar Cell; The Role of Solar Cell in Robotics and Robotic Application in Solar Cell industry,” in Proceeding Forum in Research, Science, and Technology (FIRST), 2016. Retrieved from http://eprints.polsri.ac.id/3576/3/C4.pdf.

T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209

H. N. Azmi, S. S. H. Hajjaj, K. R. Gsangaya, M. T. H. Sultan, M. F. Mail, and L. S. Hua, Design and fabrication of an agricultural robot for crop seeding, Materials Today: Proceedings, 2021, https://doi.org/10.1016/j.matpr.2021.03.191.

P. Kumar, and G. Ashok, Design and fabrication of smart seed sowing robot, Materials Today: Proceedings, Vol. 39, Part 1, pp. 354-358, 2021. https://doi.org/10.1016/j.matpr.2020.07.432.

H. Hejazipoor, J. Massah, M. Soryani, K. A. Vakilian, and G. Chegini, An intelligent spraying robot based on plant bulk volume, Computers and Electronics in Agriculture, Vol. 180, p. 105859, 2021. https://doi.org/10.1016/j.compag.2020.105859

T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003

T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161.

M. Stoelen et al., "Low-Cost Robotics for Horticulture: A Case Study on Automated Sugar Pea Harvesting," 10th European Conference on Precision Agriculture (ECPA), 2015. https://doi.org/10.3920/978-90-8686-814-8

H. Gharakhani, J. A. Thomasson, and Y. Lu, "An end-effector for robotic cotton harvesting," Smart Agricultural Technology, Vol. 2, p. 100043, 2022. https://doi.org/10.1016/j.atech.2022.100043.

Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010

J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911

L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021

Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030

L. Fu, J. Duan, X. Zou, G. Lin, S. Song, B. Ji, and Z. Yang, Banana detection based on color and texture features in the natural environment, Computers and Electronics in Agriculture, Vol. 167, p. 105057, 2019. https://doi.org/10.1016/j.compag.2019.105057.

U. Dorj, M. Lee, and S. Yun, An yield estimation in citrus orchards via fruit detection and counting using image processing, Computers and Electronics in Agriculture, Vol. 140, pp. 103-112, 2017. https://doi.org/10.1016/j.compag.2017.05.019.

M. H. Malik, T. Zhang, H. Li, M. Zhang, S. Shabbir, and A. Saeed, "Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm," IFAC-PapersOnLine, Vol. 51, No. 17, pp. 431-436, 2018. https://doi.org/10.1016/j.ifacol.2018.08.183.

L. F. S. Pereira, S. Barbon, N. A. Valous, and D. F. Barbin, Predicting the ripening of papaya fruit with digital imaging and random forests, Computers and Electronics in Agriculture, Vol. 145, pp. 76-82, 2018. https://doi.org/10.1016/j.compag.2017.12.029.

T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGIA Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013.

T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020, DOI: 10.11591/eei.v9i4.2353

J. Jhawar, “Orange Sorting by Applying Pattern Recognition on Colour Image,” Procedia Computer Science, vol. 78, pp. 691–697, December 2016. https://doi.org/10.1016/j.procs.2016.02.118

J. Azeta, C.A. Bolu, D. Hinvi, A.A. Abioye, H. Boyo, P. Anakhu, P. Onwordi, An Android Based Mobile Robot for Monitoring and Surveillance, Procedia Manufacturing, Vol. 35, pp.1129-1134, 2019. https://doi.org/10.1016/j.promfg.2019.06.066

T. Dewi, P. Risma, Y. Oktarina, RD Kusumanto, Motion control analysis of a spherical robot as a surveillance robot, Journal of Physics: Conference Series, Vol. 1167, No. 1, p. 012004, 2019. https://doi.org/10.1088/1742-6596/1167/1/012004

F. Septiarini, T. Dewi and Rusdianasari, Design of a solar-powered mobile manipulator using fuzzy logic controller of agriculture application, International Journal of Computational Vision and Robotics, Inderscience, Vol. 12, No. 5, pp. 506-531, 2022. https://doi.org/10.1504/IJCVR.2022.125356.

S. Jena, P. K. Sahu, and M. M. Sahu, 4 - Energy storage in capacitor banks, Editor(s): Prabhansu, Nayan Kumar, Emerging Trends in Energy Storage Systems and Industrial Applications, Academic Press, pp. 79-112, 2023. https://doi.org/10.1016/B978-0-323-90521-3.00015-6

Author Biography

Tresna Dewi, Politeknik Negeri Sriwijaya

Scopus Profil

https://www.scopus.com/authid/detail.uri?authorId=56106827800

Google Scholar Profil

https://scholar.google.com/citations?user=Q36zLQsAAAAJ&hl=en

SINTA Profil

http://sinta2.ristekdikti.go.id/authors/detail?id=5973948&view=overview

Download this PDF file
PDF
Statistic
Read Counter : 16 Download : 18

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License