Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 2, May 2023
  4. Articles

Issue

Vol. 8, No. 2, May 2023

Issue Published : May 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Implementation of Generative Adversarial Network (GAN) Method for Pneumonia Dataset Augmentation

https://doi.org/10.22219/kinetik.v8i2.1675
Didih Rizki Chandranegara
Universitas Muhammadiyah Malang
Zamah Sari
Universitas Muhammadiyah Malang
Muhammad Bagas Dewantoro
Universitas Muhammadiyah Malang
Hardianto Wibowo
Universitas Muhammadiyah Malang
Wildan Suharso
Universitas Muhammadiyah Malang

Corresponding Author(s) : Didih Rizki Chandranegara

didihrizki@umm.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 2, May 2023
Article Published : May 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

As a communicable disease, the majority of pneumonia cases are brought on by bacteria or viruses, which cause the lungs' alveoli to swell with fluid or mucus. Pneumonia may arise from this and further making breathing challenging since the lungs' air sacs are unable to contain enough oxygen for the body. Pneumonia may generally be diagnosed clinically (by a physician based on physical symptoms) as well as through a photo chest radiograph, CT scan, and MRI. In this case, the lower cost of a chest radiograph examination making it as one of the most popular medical imaging tests. However, chest radiograph photo readings have a disadvantage, where it takes a long time for medical staff or physicians to identify the patient's illness since it is difficult to detect the condition. Therefore, an identification of chest radiograph imagery into various forms using machine learning becomes one way to address this issue. This research focuses on building a deep neural network model using techniques from the Generative Adversarial Network algorithm. GAN is a category of machine learning techniques using two models to be trained simultaneously, one is a generator model to generated fake data and the other is a discriminator model used to separate the raw data from the real data set images. The dataset used is Chest X-Ray images obtained from repo GitHub and repo Kaggle totaling 5,863 with normal data 1583 images and pneumonia data 4273 imagesThe results showed that the use of the Generative Adevrsarial Network method as augmentation data proved to be more effective in improving the generalization of neural networks, this can be seen from the results the result of the accuracy value obtained is 97%.

Keywords

Pneumonia Chest Radiograph Generative Adversarial Network Machine Learning Deep Neural Network Convolutional Neural Network
Chandranegara, D. R., Sari, Z., Dewantoro, M. B., Wibowo, H., & Suharso, W. (2023). Implementation of Generative Adversarial Network (GAN) Method for Pneumonia Dataset Augmentation. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(2). https://doi.org/10.22219/kinetik.v8i2.1675
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. T. Gabruseva, D. Poplavskiy, and A. Kalinin, “Deep learning for automatic pneumonia detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 1436–1443, 2020. https://doi.org/10.1109/CVPRW50498.2020.00183
  2. S. M. Ilpaj and N. Nurwati, “Analisis Pengaruh Tingkat Kematian Akibat Covid-19 Terhadap Kesehatan Mental Masyarakat Di Indonesia,” Focus : Jurnal Pekerjaan Sosial, vol. 3, no. 1, p. 16, 2020. https://doi.org/10.24198/focus.v3i1.28123
  3. A. Sari, “Asuhan Keperawatan pada Anak: Infant (0-12 Bulan) dengan Bronkopneumonia dengan Masalah Keperawatan Ketidakefektifan Bersihan Jalan Napas di Ruang Melati RSUD Ciamis Tahun 2018,” Sekolah Tinggi Kesehatan Bhakti Kencana Bandung, 2018.
  4. Y. Chandola, J. Virmani, H. S. Bhadauria, and P. Kumar, Deep Learning for Chest Radiographs: Computer-Aided Classification. Elsevier, 2021.
  5. B. A. Fikri, “Analisis Faktor Risiko Pemberian Asi Dan Ventilasi Kamar Terhadap Kejadian Pneumonia Balita,” The Indonesian Journal of Public Health, vol. 11, no. 1, p. 14, 2016, doi: 10.20473/ijph.v11i1.2016.14-27.
  6. I. Joshi, M. Grimmer, C. Rathgeb, C. Busch, F. Bremond, and A. Dantcheva, “Synthetic Data in Human Analysis: A Survey,” Aug. 2022. https://doi.org/10.48550/arXiv.2208.09191
  7. I. M. Dendi Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network (Classification of Pneumonia Based on Lung X-rays Images using Convolutional Neural Network),” 2020. https://doi.org/10.22146/jnteti.v9i2.66
  8. N. Yudistira, “Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif,” EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 11, no. 2, p. 78, 2021. http://dx.doi.org/10.36448/expert.v11i2.2063
  9. F. Al-Turjman, AI-Powered IoT for COVID-19. CRC Press, 2021.
  10. Y. F. Riti and S. S. Tandjung, “Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network,” Progresif: Jurnal Ilmiah Komputer, pp. 91–100, 2022. http://dx.doi.org/10.35889/progresif.v18i1.784
  11. A. Azis, “Klasifikasi Pneumonia Menggunakan Metode Convolutional Neural Network,” Universitas Muhammadiyah Malang, 2020.
  12. S. Motamed, P. Rogalla, and F. Khalvati, “Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images,” Inform Med Unlocked, vol. 27, no. August, p. 100779, 2021. https://doi.org/10.1016/j.imu.2021.100779
  13. S. K. Venu and S. Ravula, “Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images,” Future Internet, vol. 13, no. 1, pp. 1–13, 2021. https://doi.org/10.3390/fi13010008
  14. N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, and S. Elghamrawy, “Detection of Coronavirus (COVID-19) Associated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray Dataset,” pp. 1–15, 2020. https://doi.org/10.48550/arXiv.2004.01184
  15. S. Sundaram and N. Hulkund, GAN-based Data Augmentation for Chest X-ray Classification, vol. 1, no. 1. Association for Computing Machinery, 2021. https://doi.org/10.48550/arXiv.2107.02970
  16. A. Solanki, A. Nayyar, and M. Naved, Generative Adversarial Networks for Image-to-Image Translation. Academic Press, 2021.
  17. E. Ayan, B. Karabulut, and H. M. Ünver, “Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images,” Arab J Sci Eng, vol. 47, no. 2, pp. 2123–2139, Feb. 2022. https://doi.org/10.1007/s13369-021-06127-z
  18. M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using Deep Neural Networks,” Comput Electron Agric, vol. 155, pp. 473–486, Dec. 2018. https://doi.org/10.1016/j.compag.2018.10.015
  19. L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indonesian Journal of Statistics and Its Applications, vol. 3, no. 3, pp. 331–340, 2019. https://doi.org/10.29244/ijsa.v3i3.560
  20. J. P. Cohen et al., “TorchXRayVision: A library of chest X-ray datasets and models,” 2021. https://doi.org/10.48550/arXiv.2111.00595
  21. P. Mooney, “Chest X-Ray Images (Pneumonia),” 2018. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia (accessed Apr. 10, 2022).
  22. J. Paul Cohen, “ieee8023 / covid-chestxray-dataset,” 2021.
  23. M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, pp. 90847–90861, 2020. https://doi.org/10.1109/ACCESS.2020.2994222
  24. X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability assignment based on the confusion matrix for classification problem,” Inf Sci (N Y), vol. 340–341, pp. 250–261, May 2016. https://doi.org/10.1016/j.ins.2016.01.033
  25. M. Ohsaki, P. Wang, K. Matsuda, S. Katagiri, H. Watanabe, and A. Ralescu, “Confusion-matrix-based kernel logistic regression for imbalanced data classification,” IEEE Trans Knowl Data Eng, vol. 29, no. 9, pp. 1806–1819, Sep. 2017. https://doi.org/10.1109/TKDE.2017.2682249
Read More

References


T. Gabruseva, D. Poplavskiy, and A. Kalinin, “Deep learning for automatic pneumonia detection,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 1436–1443, 2020. https://doi.org/10.1109/CVPRW50498.2020.00183

S. M. Ilpaj and N. Nurwati, “Analisis Pengaruh Tingkat Kematian Akibat Covid-19 Terhadap Kesehatan Mental Masyarakat Di Indonesia,” Focus : Jurnal Pekerjaan Sosial, vol. 3, no. 1, p. 16, 2020. https://doi.org/10.24198/focus.v3i1.28123

A. Sari, “Asuhan Keperawatan pada Anak: Infant (0-12 Bulan) dengan Bronkopneumonia dengan Masalah Keperawatan Ketidakefektifan Bersihan Jalan Napas di Ruang Melati RSUD Ciamis Tahun 2018,” Sekolah Tinggi Kesehatan Bhakti Kencana Bandung, 2018.

Y. Chandola, J. Virmani, H. S. Bhadauria, and P. Kumar, Deep Learning for Chest Radiographs: Computer-Aided Classification. Elsevier, 2021.

B. A. Fikri, “Analisis Faktor Risiko Pemberian Asi Dan Ventilasi Kamar Terhadap Kejadian Pneumonia Balita,” The Indonesian Journal of Public Health, vol. 11, no. 1, p. 14, 2016, doi: 10.20473/ijph.v11i1.2016.14-27.

I. Joshi, M. Grimmer, C. Rathgeb, C. Busch, F. Bremond, and A. Dantcheva, “Synthetic Data in Human Analysis: A Survey,” Aug. 2022. https://doi.org/10.48550/arXiv.2208.09191

I. M. Dendi Maysanjaya, “Klasifikasi Pneumonia pada Citra X-rays Paru-paru dengan Convolutional Neural Network (Classification of Pneumonia Based on Lung X-rays Images using Convolutional Neural Network),” 2020. https://doi.org/10.22146/jnteti.v9i2.66

N. Yudistira, “Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif,” EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 11, no. 2, p. 78, 2021. http://dx.doi.org/10.36448/expert.v11i2.2063

F. Al-Turjman, AI-Powered IoT for COVID-19. CRC Press, 2021.

Y. F. Riti and S. S. Tandjung, “Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network,” Progresif: Jurnal Ilmiah Komputer, pp. 91–100, 2022. http://dx.doi.org/10.35889/progresif.v18i1.784

A. Azis, “Klasifikasi Pneumonia Menggunakan Metode Convolutional Neural Network,” Universitas Muhammadiyah Malang, 2020.

S. Motamed, P. Rogalla, and F. Khalvati, “Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images,” Inform Med Unlocked, vol. 27, no. August, p. 100779, 2021. https://doi.org/10.1016/j.imu.2021.100779

S. K. Venu and S. Ravula, “Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images,” Future Internet, vol. 13, no. 1, pp. 1–13, 2021. https://doi.org/10.3390/fi13010008

N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, and S. Elghamrawy, “Detection of Coronavirus (COVID-19) Associated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray Dataset,” pp. 1–15, 2020. https://doi.org/10.48550/arXiv.2004.01184

S. Sundaram and N. Hulkund, GAN-based Data Augmentation for Chest X-ray Classification, vol. 1, no. 1. Association for Computing Machinery, 2021. https://doi.org/10.48550/arXiv.2107.02970

A. Solanki, A. Nayyar, and M. Naved, Generative Adversarial Networks for Image-to-Image Translation. Academic Press, 2021.

E. Ayan, B. Karabulut, and H. M. Ünver, “Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images,” Arab J Sci Eng, vol. 47, no. 2, pp. 2123–2139, Feb. 2022. https://doi.org/10.1007/s13369-021-06127-z

M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using Deep Neural Networks,” Comput Electron Agric, vol. 155, pp. 473–486, Dec. 2018. https://doi.org/10.1016/j.compag.2018.10.015

L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indonesian Journal of Statistics and Its Applications, vol. 3, no. 3, pp. 331–340, 2019. https://doi.org/10.29244/ijsa.v3i3.560

J. P. Cohen et al., “TorchXRayVision: A library of chest X-ray datasets and models,” 2021. https://doi.org/10.48550/arXiv.2111.00595

P. Mooney, “Chest X-Ray Images (Pneumonia),” 2018. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia (accessed Apr. 10, 2022).

J. Paul Cohen, “ieee8023 / covid-chestxray-dataset,” 2021.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, pp. 90847–90861, 2020. https://doi.org/10.1109/ACCESS.2020.2994222

X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability assignment based on the confusion matrix for classification problem,” Inf Sci (N Y), vol. 340–341, pp. 250–261, May 2016. https://doi.org/10.1016/j.ins.2016.01.033

M. Ohsaki, P. Wang, K. Matsuda, S. Katagiri, H. Watanabe, and A. Ralescu, “Confusion-matrix-based kernel logistic regression for imbalanced data classification,” IEEE Trans Knowl Data Eng, vol. 29, no. 9, pp. 1806–1819, Sep. 2017. https://doi.org/10.1109/TKDE.2017.2682249

Author Biography

Didih Rizki Chandranegara, Universitas Muhammadiyah Malang

Google Scholar Profile: https://scholar.google.com/citations?user=e_MhnYMAAAAJ&hl=en

Download this PDF file
PDF
Statistic
Read Counter : 13 Download : 24

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License