Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 2, May 2023
  4. Articles

Issue

Vol. 8, No. 2, May 2023

Issue Published : May 31, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Integration of Fuzzy C-Means and SAW Methods on Education Fee Assistance Recipients

https://doi.org/10.22219/kinetik.v8i2.1636
Abdul Fadlil
Universitas Ahmad Dahlan
Imam Riadi
Universitas Ahmad Dahlan
Yana Mulyana
Universitas Ahmad Dahlan

Corresponding Author(s) : Yana Mulyana

yana2107048012@webmail.uad.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 2, May 2023
Article Published : May 31, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Every year, UMTAS gets a quota for KIP tuition fee assistance provided by KEMDIKBUD. This program is intended for high school / vocational/equivalent graduates from poor and vulnerable families. The evaluation results of its implementation have problems, including the number of applicants exceeding the quota given by KEMDIKBUD and some applicants coming from well-off families. This research uses the fuzzy c-means method for data clustering and the SAW method for ranking. The results of data grouping using the fuzzy c-means method obtained the first cluster (C1) of 72 data and the second cluster (C2) of 119 data. Group C1 is closer to the provisions of aid recipients (eligible) compared to data group C2 (ineligible) because Data C1 consists of 100% DTKS recipients, 50% KIP and KKS card owners, 100% parental income <750,000, 40.28% parental dependents >=2 people and 29.17% applicants with achievements. 72 registrant data included in Data C1 are then ranked using the SAW technique to get weights, and 30 data with the highest weight will be used as a decision on recipients of KIP-Kuliah Education fee assistance according to the quota provided. The optimization of Fuzzy C-Means with SAW methods in selecting recipients of education fee assistance is objective and right on target.

Keywords

Fuzzy C-Means SAW KEMDIKBUD KIP-Kuliah Clustering
Fadlil, A. ., Riadi, I., & Mulyana, Y. (2023). Integration of Fuzzy C-Means and SAW Methods on Education Fee Assistance Recipients. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(2). https://doi.org/10.22219/kinetik.v8i2.1636
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. F. Sabilah and S. Salahudin, “Public Policy Analysis on Education Budget Allocation: Case Study in Thirty-Eight Regencies/Municipalities in East Java, Indonesia,” J. Stud. Pemerintah., vol. 13, no. 1, pp. 59–85, 2022. https://doi.org/10.18196/jgp.v13i1.12529
  2. Permendikbud No 10 Tahun 2020, “Peraturan Mentri Pendidikan dan Kebudayaan Republik Indonesia Nomor 10 Tahun 2020 Tentang Program Indonesia Pintar,” Menteri Pendidik. dan Kebud. RI, p. 82, 2020.
  3. R. Trisudarmo, E. Sediyono, and J. E. Suseno, “Combination of Fuzzy C-Means Clustering Methods and Simple Additive Weighting in Scholarship of Decision Support Systems,” Proc. 1st Annu. Int. Conf. Nat. Soc. Sci. Educ. (ICNSSE 2020), vol. 547, no. Icnsse, pp. 161–169, 2021. https://doi.org/10.2991/assehr.k.210430.025
  4. W. Gunawan and B. S. P. Diwiryo, “Implementasi Algoritma Fuzzy C-Means Clustering Sistem Crowdfunding pada Sektor Industri Kreatif Berbasis Web,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 193, 2020. http://dx.doi.org/10.26418/jp.v6i2.38018
  5. M. A. Kasri and H. Jati, “Combination of K-Means and Simple Additive Weighting in Deciding Locations and Strategies of University Marketing,” Khazanah, vol. 6, pp. 132–141, 2020. https://doi.org/10.23917/khif.v6i2.11281
  6. N. D. Arianti and S. Moedjiono, “DSS for scholarship recipients using the fuzzy C-means clustering integrated with the simple additive weighting method,” Int. J. Sci. Technol. Res., vol. 8, no. 9, pp. 2048–2050, 2019.
  7. E. V. Manoppo, N. A. Laoh, I. Pemerintahan, D. Negeri, P. Provinsi, and S. Utara, “Strategi Pemanfaatan Data Terpadu Kesejahteraan Sosial (DTKS) dalam Penyaluran Bantuan Sosial RS-RTLH oleh Dinas Sosial Provinsi Sulawesi Utara,” vol. 4, no. April. pp. 25–39, 2022. https://doi.org/10.33701/jk.v4i1.2598
  8. A. Amin, R. N. Sasongko, and A. Yuneti, “Kebijakan Kartu Indonesia Pintar untuk Memerdekakan Mahasiswa Kurang Mampu,” J. Adm. Educ. Manag., vol. 5, no. 1, pp. 98–107, 2022. https://doi.org/10.31539/alignment.v5i1.3803
  9. R. T. Allopa and T. Pabendon, “Program Kartu Keluarga Sejahtera: Efektifkah? (Bukti Empiris di Kampung Mulia Kencana Kabupaten Mimika),” ESEOSI J. Econ. Reg. Sci., vol. 2, no. 2, pp. 139–155, 2022. https://doi.org/10.52421/jurnal-esensi.v2i2.223
  10. A. K. Wardhani, “Implementasi Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Kajen Pekalongan,” J. Transform., vol. 14, no. 1, pp. 30–37, 2016.
  11. C. Ais, A. Hamid, D. Candra, and R. Novitasari, “Analysis of Livestock Meat Production in Indonesia Using Fuzzy C-Means Clustering,” J. Ilmu Komput. dan Inf. (Journal Comput. Sci. Information), vol. 15, no. 1, pp. 1–8, 2022. https://doi.org/10.21609/jiki.v15i1.993
  12. F. R. Hariri, “Implementation of Fuzzy C-Means for Clustering the Majelis Ulama Indonesia (MUI) Fatwa Documents,” J. Online Inform., vol. 6, no. 1, p. 79, 2021. https://doi.org/10.15575/join.v6i1.591
  13. D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “Implementasi Fuzzy C-Means Clustering Dalam Penentuan Beasiswa,” J. Ilmu Mat. dan Terap., vol. 11, pp. 1–12, 2017.
  14. Z. Li, S. Chen, L. Pei, J. Chu, and J. Song, “Teacher Allocation and Evaluation Based on Fuzzy C-Means Clustering,” Mob. Inf. Syst., vol. 2022, no. 4, pp. 1–9, 2022. https://doi.org/10.1155/2022/8465713
  15. L. Wang and Y. Jiang, “Collocating Recommendation Method for E-Commerce Based on Fuzzy C-Means Clustering Algorithm,” J. Math., vol. 2022, pp. 1–11, 2022. https://doi.org/10.1155/2022/7414419
  16. Y. Li, J. Gou, and Z. Fan, “Educational data mining for students performance based on fuzzy C‐means clustering,” J. Eng., vol. 2019, no. 11, pp. 8245–8250, 2019. https://doi.org/10.1049/joe.2019.0938
  17. M. Wulandariyaningsih, A. N. Hasmi, and S. Pancahayani, “Sistem Pendukung Keputusan Penentuan Uang Kuliah Tunggal Mahasiswa Dengan Metode Fuzzy C-Means (Studi Kasus Institut Teknologi Kalimantan),” Teorema Teor. dan Ris. Mat., vol. 7, no. 1, p. 117, 2022. http://dx.doi.org/10.25157/teorema.v7i1.6701
  18. M. A. Pamungkas, H. Oktavianto, and R. Umilasari, “Perbandingan Fuzzy C-Means Dan K-Means Untuk Mengelompokkan Tingkat Buta Huruf Berdasarkan Provinsi Di Indonesia,” 2021.
  19. G. Setiadi and W. Hadikurniawati, “Implementasi Metode Hybrid AHP-SAW-TOPSIS Untuk Pemilihan Taman TOGA,” J. Inform., vol. 9, no. 1, pp. 18–25, 2022. https://doi.org/10.31294/inf.v9i1.11901
  20. R. Fauzan, Y. Indrasary, and N. Muthia, “Sistem Pendukung Keputusan Penerimaan Beasiswa Bidik Misi di POLIBAN dengan Metode SAW Berbasis Web,” J. Online Inform., vol. 2, no. 2, p. 79, 2018. https://doi.org/10.15575/join.v2i2.101
  21. R. Sovia, E. P. W. Mandala, and S. Mardhiah, “Algoritma K-Means dalam Pemilihan Siswa Berprestasi dan Metode SAW untuk Prediksi Penerima Beasiswa Berprestasi,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 181, 2020. http://dx.doi.org/10.26418/jp.v6i2.37759
  22. I. Septiana, M. Irfan, A. R. Atmadja, and B. Subaeki, “Sistem Pendukung Keputusan Penentu Dosen Penguji Dan Pembimbing Tugas Akhir Menggunakan Fuzzy Multiple Attribute Decision Making dengan Simple Additive Weighting (Studi Kasus: Jurusan Teknik Informatika UIN SGD Bandung),” J. Online Inform., vol. 1, no. 1, p. 43, 2016. https://doi.org/10.15575/join.v1i1.10
  23. A. Muhariya, I. Riadi, and Y. Prayudi, “Cyberbullying Analysis on Instagram Using K-Means Clustering,” JUITA J. Inform., vol. 10, no. 2, p. 261, 2022. http://dx.doi.org/10.30595/juita.v10i2.14490
  24. A. M. Fadhilah, M. I. Wahyuddin, and D. Hidayatullah, “Analisis Faktor yang Mempengaruhi Perokok Beralih ke Produk Alternatif Tembakau (VAPE) menggunakan Metode K-Means Clustering,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 2, p. 219, 2020. https://doi.org/10.35870/jtik.v5i2.182
  25. R. Setiawan, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru ( Studi Kasus : Politeknik Lp3i Jakarta ),” J. Lentera Ict, vol. 3, no. 1, pp. 76–92, 2016.
  26. D. P. M and A. Fadlil, “Penerapan Clustering K-Means untuk Pengelompokan Tingkat Kepuasan Pengguna Lulusan Perguruan Tinggi,” vol. 6, pp. 1693–1700, 2022. http://dx.doi.org/10.30865/mib.v6i3.4191
  27. Y. S. Siregar and P. Harliana, “Algoritma Fuzzy C-Means Pada Aplikasi Matlab Dalam Menentukan Dosen Pembimbing Tugas Akhir,” Semin. Nas. Unisla, pp. 213–217, 2018.
  28. N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020. https://doi.org/10.31294/p.v22i2.8808
  29. Pelsri Ramadar Noor Saputra and A. Chusyairi, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas pada Cakupan Imunisasi Dasar Lengkap,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 5–12, 2020. https://doi.org/10.29207/resti.v4i6.2556
  30. A. M. Anter and M. Ali, “Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems,” Soft Comput., vol. 24, no. 3, pp. 1565–1584, 2020. https://doi.org/10.1007/s00500-019-03988-3
Read More

References


F. Sabilah and S. Salahudin, “Public Policy Analysis on Education Budget Allocation: Case Study in Thirty-Eight Regencies/Municipalities in East Java, Indonesia,” J. Stud. Pemerintah., vol. 13, no. 1, pp. 59–85, 2022. https://doi.org/10.18196/jgp.v13i1.12529

Permendikbud No 10 Tahun 2020, “Peraturan Mentri Pendidikan dan Kebudayaan Republik Indonesia Nomor 10 Tahun 2020 Tentang Program Indonesia Pintar,” Menteri Pendidik. dan Kebud. RI, p. 82, 2020.

R. Trisudarmo, E. Sediyono, and J. E. Suseno, “Combination of Fuzzy C-Means Clustering Methods and Simple Additive Weighting in Scholarship of Decision Support Systems,” Proc. 1st Annu. Int. Conf. Nat. Soc. Sci. Educ. (ICNSSE 2020), vol. 547, no. Icnsse, pp. 161–169, 2021. https://doi.org/10.2991/assehr.k.210430.025

W. Gunawan and B. S. P. Diwiryo, “Implementasi Algoritma Fuzzy C-Means Clustering Sistem Crowdfunding pada Sektor Industri Kreatif Berbasis Web,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 193, 2020. http://dx.doi.org/10.26418/jp.v6i2.38018

M. A. Kasri and H. Jati, “Combination of K-Means and Simple Additive Weighting in Deciding Locations and Strategies of University Marketing,” Khazanah, vol. 6, pp. 132–141, 2020. https://doi.org/10.23917/khif.v6i2.11281

N. D. Arianti and S. Moedjiono, “DSS for scholarship recipients using the fuzzy C-means clustering integrated with the simple additive weighting method,” Int. J. Sci. Technol. Res., vol. 8, no. 9, pp. 2048–2050, 2019.

E. V. Manoppo, N. A. Laoh, I. Pemerintahan, D. Negeri, P. Provinsi, and S. Utara, “Strategi Pemanfaatan Data Terpadu Kesejahteraan Sosial (DTKS) dalam Penyaluran Bantuan Sosial RS-RTLH oleh Dinas Sosial Provinsi Sulawesi Utara,” vol. 4, no. April. pp. 25–39, 2022. https://doi.org/10.33701/jk.v4i1.2598

A. Amin, R. N. Sasongko, and A. Yuneti, “Kebijakan Kartu Indonesia Pintar untuk Memerdekakan Mahasiswa Kurang Mampu,” J. Adm. Educ. Manag., vol. 5, no. 1, pp. 98–107, 2022. https://doi.org/10.31539/alignment.v5i1.3803

R. T. Allopa and T. Pabendon, “Program Kartu Keluarga Sejahtera: Efektifkah? (Bukti Empiris di Kampung Mulia Kencana Kabupaten Mimika),” ESEOSI J. Econ. Reg. Sci., vol. 2, no. 2, pp. 139–155, 2022. https://doi.org/10.52421/jurnal-esensi.v2i2.223

A. K. Wardhani, “Implementasi Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Kajen Pekalongan,” J. Transform., vol. 14, no. 1, pp. 30–37, 2016.

C. Ais, A. Hamid, D. Candra, and R. Novitasari, “Analysis of Livestock Meat Production in Indonesia Using Fuzzy C-Means Clustering,” J. Ilmu Komput. dan Inf. (Journal Comput. Sci. Information), vol. 15, no. 1, pp. 1–8, 2022. https://doi.org/10.21609/jiki.v15i1.993

F. R. Hariri, “Implementation of Fuzzy C-Means for Clustering the Majelis Ulama Indonesia (MUI) Fatwa Documents,” J. Online Inform., vol. 6, no. 1, p. 79, 2021. https://doi.org/10.15575/join.v6i1.591

D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “Implementasi Fuzzy C-Means Clustering Dalam Penentuan Beasiswa,” J. Ilmu Mat. dan Terap., vol. 11, pp. 1–12, 2017.

Z. Li, S. Chen, L. Pei, J. Chu, and J. Song, “Teacher Allocation and Evaluation Based on Fuzzy C-Means Clustering,” Mob. Inf. Syst., vol. 2022, no. 4, pp. 1–9, 2022. https://doi.org/10.1155/2022/8465713

L. Wang and Y. Jiang, “Collocating Recommendation Method for E-Commerce Based on Fuzzy C-Means Clustering Algorithm,” J. Math., vol. 2022, pp. 1–11, 2022. https://doi.org/10.1155/2022/7414419

Y. Li, J. Gou, and Z. Fan, “Educational data mining for students performance based on fuzzy C‐means clustering,” J. Eng., vol. 2019, no. 11, pp. 8245–8250, 2019. https://doi.org/10.1049/joe.2019.0938

M. Wulandariyaningsih, A. N. Hasmi, and S. Pancahayani, “Sistem Pendukung Keputusan Penentuan Uang Kuliah Tunggal Mahasiswa Dengan Metode Fuzzy C-Means (Studi Kasus Institut Teknologi Kalimantan),” Teorema Teor. dan Ris. Mat., vol. 7, no. 1, p. 117, 2022. http://dx.doi.org/10.25157/teorema.v7i1.6701

M. A. Pamungkas, H. Oktavianto, and R. Umilasari, “Perbandingan Fuzzy C-Means Dan K-Means Untuk Mengelompokkan Tingkat Buta Huruf Berdasarkan Provinsi Di Indonesia,” 2021.

G. Setiadi and W. Hadikurniawati, “Implementasi Metode Hybrid AHP-SAW-TOPSIS Untuk Pemilihan Taman TOGA,” J. Inform., vol. 9, no. 1, pp. 18–25, 2022. https://doi.org/10.31294/inf.v9i1.11901

R. Fauzan, Y. Indrasary, and N. Muthia, “Sistem Pendukung Keputusan Penerimaan Beasiswa Bidik Misi di POLIBAN dengan Metode SAW Berbasis Web,” J. Online Inform., vol. 2, no. 2, p. 79, 2018. https://doi.org/10.15575/join.v2i2.101

R. Sovia, E. P. W. Mandala, and S. Mardhiah, “Algoritma K-Means dalam Pemilihan Siswa Berprestasi dan Metode SAW untuk Prediksi Penerima Beasiswa Berprestasi,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 181, 2020. http://dx.doi.org/10.26418/jp.v6i2.37759

I. Septiana, M. Irfan, A. R. Atmadja, and B. Subaeki, “Sistem Pendukung Keputusan Penentu Dosen Penguji Dan Pembimbing Tugas Akhir Menggunakan Fuzzy Multiple Attribute Decision Making dengan Simple Additive Weighting (Studi Kasus: Jurusan Teknik Informatika UIN SGD Bandung),” J. Online Inform., vol. 1, no. 1, p. 43, 2016. https://doi.org/10.15575/join.v1i1.10

A. Muhariya, I. Riadi, and Y. Prayudi, “Cyberbullying Analysis on Instagram Using K-Means Clustering,” JUITA J. Inform., vol. 10, no. 2, p. 261, 2022. http://dx.doi.org/10.30595/juita.v10i2.14490

A. M. Fadhilah, M. I. Wahyuddin, and D. Hidayatullah, “Analisis Faktor yang Mempengaruhi Perokok Beralih ke Produk Alternatif Tembakau (VAPE) menggunakan Metode K-Means Clustering,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 5, no. 2, p. 219, 2020. https://doi.org/10.35870/jtik.v5i2.182

R. Setiawan, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru ( Studi Kasus : Politeknik Lp3i Jakarta ),” J. Lentera Ict, vol. 3, no. 1, pp. 76–92, 2016.

D. P. M and A. Fadlil, “Penerapan Clustering K-Means untuk Pengelompokan Tingkat Kepuasan Pengguna Lulusan Perguruan Tinggi,” vol. 6, pp. 1693–1700, 2022. http://dx.doi.org/10.30865/mib.v6i3.4191

Y. S. Siregar and P. Harliana, “Algoritma Fuzzy C-Means Pada Aplikasi Matlab Dalam Menentukan Dosen Pembimbing Tugas Akhir,” Semin. Nas. Unisla, pp. 213–217, 2018.

N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 183–188, 2020. https://doi.org/10.31294/p.v22i2.8808

Pelsri Ramadar Noor Saputra and A. Chusyairi, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas pada Cakupan Imunisasi Dasar Lengkap,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 5–12, 2020. https://doi.org/10.29207/resti.v4i6.2556

A. M. Anter and M. Ali, “Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems,” Soft Comput., vol. 24, no. 3, pp. 1565–1584, 2020. https://doi.org/10.1007/s00500-019-03988-3

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 10 Download : 16

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License