Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 1, February 2023
  4. Articles

Issue

Vol. 8, No. 1, February 2023

Issue Published : Feb 28, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Water Level Detection for Flood Disaster Management Based on Real-time Color Object Detection

https://doi.org/10.22219/kinetik.v8i1.1635
Khairun Saddami
Universitas Syiah Kuala
Yudha Nurdin
Universitas Syiah Kuala
Fina Noviantika
Universitas Syiah Kuala
Maulisa Oktiana
Universitas Syiah Kuala
Sayed Muchallil
University of Oslo

Corresponding Author(s) : Khairun Saddami

khairun.saddami@unsyiah.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 1, February 2023
Article Published : Feb 28, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Currently, the water level monitoring system for a river uses instruments installed on the banks of the river and must be checked continuously and manually. This study proposes a real-time water level detection system based on a computer vision algorithm. In the proposed system, we use color object tracking technique with a bar indicator as a reference’s level. We set three bar indicators to determine the status of the water level, namely NORMAL, ALERT and DANGER. A camera was installed across the bar level indicators to capture bar indicator and monitoring the water level. In the simulation, the monitoring system was installed in 5-100 lux lighting conditions. For experimental purposes, we set various distances of the camera, which is set of 40-80 centimeters and the camera angle is set of 30-60 degrees. The experiment results showed that this system has an accuracy of 94% at camera distance is in range 50-80 centimeters and camera angle is 60o. Based on these results, it can be concluded that this proposed system can determine the water level well in varying lighting conditions.

Keywords

Computer Vision System Early Monitoring System Flood Disaster Management Real-Time Color Object Detection Water Level Detection
Saddami, K., Nurdin, Y., Noviantika, F. ., Oktiana, M., & Muchallil, S. (2023). Water Level Detection for Flood Disaster Management Based on Real-time Color Object Detection. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(1), 507-516. https://doi.org/10.22219/kinetik.v8i1.1635
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. F. J. Glago, " Flood disaster hazards; causes, impacts and management: a state-of-the-art review," in Natural Hazards-Impacts, Adjustments and Resilience, E.N. Farsangi, London: IntechOpen, 2021. https://doi.org/10.5772/intechopen.95048
  2. I. Akar, K. Kalkan, D. Maktav, and Y. Ozdemir, “Determination of Land Use Effects on Flood Risk by using Integration of GIS and Remote Sensing,” in Recent Advance in Space Technologies, RAST 09. 4th International Conference on, 2009, pp. 23-26, 2009. https://doi.org/10.1109/RAST.2009.5158202
  3. H.M. Yasin, S. R. Zeebaree, M. A. Sadeeq, Y. A. Siddeeq, I. M. Ibrahim, R. R. Zebari, and A. B. Sallow. "IoT and ICT based smart water management, monitoring and controlling system: A review." Asian Journal of Research in Computer Science, vol. 8, no. 2, pp. 42-56, 2021. https://doi.org/10.9734/AJRCOS/2021/v8i230198
  4. G. Ufuoma, B. F. Sasanya, P. Abaje, and P. Awodutire, P. “Efficiency of camera sensors for flood monitoring and warnings”. Scientific African, vol. 13, e00887, 2021. https://doi.org/10.1016/j.sciaf.2021.e00887
  5. M. I. Zakaria and W.A. Jabbar. "Flood Monitoring and Warning Systems: A Brief Review." Journal of Southwest Jiaotong University, vol. 56, no. 3, 2021. https://doi.org/10.35741/issn.0258-2724.56.3.12
  6. B. Arshad, R. Ogie, J. Barthelemy, B. Pradhan, N. Verstaevel, and P. Perez, “Computer vision and IoT-based sensors in flood monitoring and mapping: A systematic review”. Sensors, vol. 19, no. 22, 5012, 2019. https://doi.org/10.3390/s19225012
  7. T. Tingsanchali, “Urban flood disaster management”. Procedia engineering, vol. 32, pp. 25-37, 2012. https://doi.org/10.1016/j.proeng.2012.01.1233
  8. M.A.U.R. Tariq, and N. Van De Giesen, N. “Floods and flood management in Pakistan”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 47, pp. 11-20, 2012. https://doi.org/10.1016/j.pce.2011.08.014
  9. E.J. Plate, “Flood risk and flood management”. Journal of hydrology, vol. 267, no.1-2, pp. 2-11, 2002. https://doi.org/10.1016/S0022-1694(02)00135-X
  10. M. Moy de Vitry, S. Dicht, and J.P. Leitão, “floodX: Urban flash flood experiments monitored with conventional and alternative sensors”, Earth System Science Data, vol. 9, no. 2, pp. 657-666, 2017. https://doi.org/10.5194/essd-9-657-2017
  11. H. Wan , Jidin, Aiman Zakwan, Aziz, and N. Rahim, “Flood disaster indicator of water level monitoring system,” International Journal of Electrical and Computer Engineering, vol. 9, Art. no. 3, pp. 1694-1699, 2019. doi: http://doi.org/10.11591/ijece.v9i3.pp1694-1699.
  12. A. N. Yumang et al., “Real-time flood water level monitoring system with SMS notification,” in IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2017, pp. 1–3. https://doi.org/ 10.1109/HNICEM.2017.8269468
  13. S. Udomsiri, M. Iwahashi, “Design of fir filter for water level detection”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 48, no. 12, pp. 2663–2668, 2008.
  14. S. Park, N. Lee, Y. Han, H. Hahn, “The water level detection algorithm using the accumulated histogram with band pass filter”, World Academy of Science, Engineering and Technology, vol. 56, pp. 193–197, 2009.
  15. Y.-T. Lin, Y.-C. Lin, J.-Y. Han, “Automatic water-level detection using single-camera images with varied poses”, Measurement, vol. 127, pp. 167–174, 2018. https://doi.org/10.1016/j.measurement.2018.05.100
  16. E. Ridolfi, P. Manciola, “Water level measurements from drones: a pilot case study at a dam site”, Water, vol. 10, no. 3, 297, 2018. https://doi.org/10.3390/w10030297
  17. M.T. Perks, S.F. Dal Sasso, A. Hauet, E. Jamieson, J. Le Coz, S. Pearce, S. Peña-Haro, A. Pizarro, D. Strelnikova, F. Tauro, and J. Bomhof, “Towards harmonisation of image velocimetry techniques for river surface velocity observations”, Earth System Science Data, vol. 12, no. 3, pp.1545-1559, 2020. https://doi.org/10.5194/essd-12-1545-2020
  18. F. Tauro, G. Olivieri, A. Petroselli, M. Porfiri, and S. Grimaldi, “Flow monitoring with a camera: a case study on a flood event in the Tiber river”, Environmental Monitoring and Assessment, vol. 188, no. 2, pp. 1-11, 2016. https://doi.org/ 10.1007/s10661-015-5082-5
  19. F. Tosi, M. Rocca, F. Aleotti, M. Poggi, S. Mattoccia, F. Tauro, E. Toth, and S. Grimaldi, “Enabling image-based streamflow monitoring at the edge”, Remote Sensing, vol. 12, no.12, p.2047, 2020. https://doi.org/10.3390/rs12122047
  20. S. Pearce, R. Ljubičić, S. Peña-Haro, M. Perks, F. Tauro, A. Pizarro, S.F. Dal Sasso, D. Strelnikova, S. Grimaldi, I. Maddock, and G. Paulus, 2020. “An evaluation of image velocimetry techniques under low flow conditions and high seeding densities using unmanned aerial systems”, Remote Sensing, vol. 12, no. 2, p.232, 2020. https://doi.org/ https://doi.org/10.3390/rs12020232
  21. P. Koutalakis, O. Tzoraki, and G. Zaimes, “Uavs for hydrologic scopes: application of a low-cost uav to estimate surface water velocity by using three different image-based methods”, Drones, vol. 3, no.1, pp. 2019. https://doi.org/10.3390/drones3010014
  22. Q.W. Lewis, and B.L. Rhoads, “Lspiv measurements of two-dimensional flow structure in streams using small unmanned aerial systems: 1. accuracy assessment based on comparison with stationary camera platforms and in-stream velocity measurements”, Water Resources Research, vol. 54, no. 10, pp. 8000–8018, 2018. https://doi.org/10.1029/2018WR022551
  23. F. Tauro, R. Piscopia, and S. Grimaldi, “Streamflow observations from cameras: large-scale particle image velocimetry or particle tracking velocimetry?” Water Resources Research, vol. 53, no.12, pp. 10374–10394, 2017. https://doi.org/10.1002/2017WR020848
  24. H.M. Fritz, J.C. Borrero, C.E. Synolakis, and J. Yoo, “2004 indian ocean tsunami flow velocity measurements from survivor videos”, Geophysics. Research Letters, vol. 33, no. 24, 2006. https://doi.org/10.1029/2006GL026784
  25. A.A. Bradley, A. Kruger, E.A. Meselhe, M.V. Muste, “Flow measurement in streams using video imagery”, Water Resources Research, vol. 38, no. 12, pp. 1–51, 2002. https://doi.org/10.1029/2002WR001317
  26. Y. Saragih, H. Prima, Roostiani, Hasna Aliya, and E. S. Agatha, “Design of automatic water flood control and monitoring systems in reservoirs based on internet of things (iot),” in 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020, pp. 30–35. https://doi.org/ 10.1109/MECnIT48290.2020.9166593
  27. A. Kurniawan, I. W. Mustika, and S. S. Kusumawardani, “Color Tracking Testing Using IP Webcams for Water Level Detection,” Conference Paper, Lab. Sistem Elektronis, Universitas Gadjah Mada, Yogyakarta, 2014.
  28. A. Firmansyah, A. Sasongko, and M. A. Said, “Water Level Monitoring System and Flood Warning Notification on Android-Based Sluice,” Thesis, DIII Teknik Komputer, Politeknik Harapan Bersama Tegal, Indonesia, 2020.
  29. A.S Nasution, A. Alvin, A.T. Siregar, and M.S. Sinaga, “KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering”, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 7, no. 3, pp. 299-308, 2022. https://doi.org/10.22219/kinetik.v7i3.1486
  30. M. Deswal and N. Sharma, “A Simplified Review on Fast HSV Image Color and Texture Detection and Image Conversion Algorithm,” International Journal of Computer Science and Mobile Computing, vol. 3, no. 5, p.7, 2014.
  31. C-H Teh and Roland T. Chin, “On the detection of dominant points on digital curves”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 8, pp. 859–872, 1989. https://doi.org/10.1109/34.31447
  32. G. Bradski, G. “The openCV library”, Dr. Dobb's Journal: Software Tools for the Professional Programmer, vol. 25, no. 11, pp. 120-123, 2000.
  33. M. J. P San Miguel, and C.R. Ruiz Jr, C. R. “Automatic Flood Detection Using the Video of Static Cameras”. In DLSU Research Congress. De La Salle University Manila, Philippines, 2016.
Read More

References


F. J. Glago, " Flood disaster hazards; causes, impacts and management: a state-of-the-art review," in Natural Hazards-Impacts, Adjustments and Resilience, E.N. Farsangi, London: IntechOpen, 2021. https://doi.org/10.5772/intechopen.95048

I. Akar, K. Kalkan, D. Maktav, and Y. Ozdemir, “Determination of Land Use Effects on Flood Risk by using Integration of GIS and Remote Sensing,” in Recent Advance in Space Technologies, RAST 09. 4th International Conference on, 2009, pp. 23-26, 2009. https://doi.org/10.1109/RAST.2009.5158202

H.M. Yasin, S. R. Zeebaree, M. A. Sadeeq, Y. A. Siddeeq, I. M. Ibrahim, R. R. Zebari, and A. B. Sallow. "IoT and ICT based smart water management, monitoring and controlling system: A review." Asian Journal of Research in Computer Science, vol. 8, no. 2, pp. 42-56, 2021. https://doi.org/10.9734/AJRCOS/2021/v8i230198

G. Ufuoma, B. F. Sasanya, P. Abaje, and P. Awodutire, P. “Efficiency of camera sensors for flood monitoring and warnings”. Scientific African, vol. 13, e00887, 2021. https://doi.org/10.1016/j.sciaf.2021.e00887

M. I. Zakaria and W.A. Jabbar. "Flood Monitoring and Warning Systems: A Brief Review." Journal of Southwest Jiaotong University, vol. 56, no. 3, 2021. https://doi.org/10.35741/issn.0258-2724.56.3.12

B. Arshad, R. Ogie, J. Barthelemy, B. Pradhan, N. Verstaevel, and P. Perez, “Computer vision and IoT-based sensors in flood monitoring and mapping: A systematic review”. Sensors, vol. 19, no. 22, 5012, 2019. https://doi.org/10.3390/s19225012

T. Tingsanchali, “Urban flood disaster management”. Procedia engineering, vol. 32, pp. 25-37, 2012. https://doi.org/10.1016/j.proeng.2012.01.1233

M.A.U.R. Tariq, and N. Van De Giesen, N. “Floods and flood management in Pakistan”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 47, pp. 11-20, 2012. https://doi.org/10.1016/j.pce.2011.08.014

E.J. Plate, “Flood risk and flood management”. Journal of hydrology, vol. 267, no.1-2, pp. 2-11, 2002. https://doi.org/10.1016/S0022-1694(02)00135-X

M. Moy de Vitry, S. Dicht, and J.P. Leitão, “floodX: Urban flash flood experiments monitored with conventional and alternative sensors”, Earth System Science Data, vol. 9, no. 2, pp. 657-666, 2017. https://doi.org/10.5194/essd-9-657-2017

H. Wan , Jidin, Aiman Zakwan, Aziz, and N. Rahim, “Flood disaster indicator of water level monitoring system,” International Journal of Electrical and Computer Engineering, vol. 9, Art. no. 3, pp. 1694-1699, 2019. doi: http://doi.org/10.11591/ijece.v9i3.pp1694-1699.

A. N. Yumang et al., “Real-time flood water level monitoring system with SMS notification,” in IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2017, pp. 1–3. https://doi.org/ 10.1109/HNICEM.2017.8269468

S. Udomsiri, M. Iwahashi, “Design of fir filter for water level detection”, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 48, no. 12, pp. 2663–2668, 2008.

S. Park, N. Lee, Y. Han, H. Hahn, “The water level detection algorithm using the accumulated histogram with band pass filter”, World Academy of Science, Engineering and Technology, vol. 56, pp. 193–197, 2009.

Y.-T. Lin, Y.-C. Lin, J.-Y. Han, “Automatic water-level detection using single-camera images with varied poses”, Measurement, vol. 127, pp. 167–174, 2018. https://doi.org/10.1016/j.measurement.2018.05.100

E. Ridolfi, P. Manciola, “Water level measurements from drones: a pilot case study at a dam site”, Water, vol. 10, no. 3, 297, 2018. https://doi.org/10.3390/w10030297

M.T. Perks, S.F. Dal Sasso, A. Hauet, E. Jamieson, J. Le Coz, S. Pearce, S. Peña-Haro, A. Pizarro, D. Strelnikova, F. Tauro, and J. Bomhof, “Towards harmonisation of image velocimetry techniques for river surface velocity observations”, Earth System Science Data, vol. 12, no. 3, pp.1545-1559, 2020. https://doi.org/10.5194/essd-12-1545-2020

F. Tauro, G. Olivieri, A. Petroselli, M. Porfiri, and S. Grimaldi, “Flow monitoring with a camera: a case study on a flood event in the Tiber river”, Environmental Monitoring and Assessment, vol. 188, no. 2, pp. 1-11, 2016. https://doi.org/ 10.1007/s10661-015-5082-5

F. Tosi, M. Rocca, F. Aleotti, M. Poggi, S. Mattoccia, F. Tauro, E. Toth, and S. Grimaldi, “Enabling image-based streamflow monitoring at the edge”, Remote Sensing, vol. 12, no.12, p.2047, 2020. https://doi.org/10.3390/rs12122047

S. Pearce, R. Ljubičić, S. Peña-Haro, M. Perks, F. Tauro, A. Pizarro, S.F. Dal Sasso, D. Strelnikova, S. Grimaldi, I. Maddock, and G. Paulus, 2020. “An evaluation of image velocimetry techniques under low flow conditions and high seeding densities using unmanned aerial systems”, Remote Sensing, vol. 12, no. 2, p.232, 2020. https://doi.org/ https://doi.org/10.3390/rs12020232

P. Koutalakis, O. Tzoraki, and G. Zaimes, “Uavs for hydrologic scopes: application of a low-cost uav to estimate surface water velocity by using three different image-based methods”, Drones, vol. 3, no.1, pp. 2019. https://doi.org/10.3390/drones3010014

Q.W. Lewis, and B.L. Rhoads, “Lspiv measurements of two-dimensional flow structure in streams using small unmanned aerial systems: 1. accuracy assessment based on comparison with stationary camera platforms and in-stream velocity measurements”, Water Resources Research, vol. 54, no. 10, pp. 8000–8018, 2018. https://doi.org/10.1029/2018WR022551

F. Tauro, R. Piscopia, and S. Grimaldi, “Streamflow observations from cameras: large-scale particle image velocimetry or particle tracking velocimetry?” Water Resources Research, vol. 53, no.12, pp. 10374–10394, 2017. https://doi.org/10.1002/2017WR020848

H.M. Fritz, J.C. Borrero, C.E. Synolakis, and J. Yoo, “2004 indian ocean tsunami flow velocity measurements from survivor videos”, Geophysics. Research Letters, vol. 33, no. 24, 2006. https://doi.org/10.1029/2006GL026784

A.A. Bradley, A. Kruger, E.A. Meselhe, M.V. Muste, “Flow measurement in streams using video imagery”, Water Resources Research, vol. 38, no. 12, pp. 1–51, 2002. https://doi.org/10.1029/2002WR001317

Y. Saragih, H. Prima, Roostiani, Hasna Aliya, and E. S. Agatha, “Design of automatic water flood control and monitoring systems in reservoirs based on internet of things (iot),” in 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), 2020, pp. 30–35. https://doi.org/ 10.1109/MECnIT48290.2020.9166593

A. Kurniawan, I. W. Mustika, and S. S. Kusumawardani, “Color Tracking Testing Using IP Webcams for Water Level Detection,” Conference Paper, Lab. Sistem Elektronis, Universitas Gadjah Mada, Yogyakarta, 2014.

A. Firmansyah, A. Sasongko, and M. A. Said, “Water Level Monitoring System and Flood Warning Notification on Android-Based Sluice,” Thesis, DIII Teknik Komputer, Politeknik Harapan Bersama Tegal, Indonesia, 2020.

A.S Nasution, A. Alvin, A.T. Siregar, and M.S. Sinaga, “KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering”, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 7, no. 3, pp. 299-308, 2022. https://doi.org/10.22219/kinetik.v7i3.1486

M. Deswal and N. Sharma, “A Simplified Review on Fast HSV Image Color and Texture Detection and Image Conversion Algorithm,” International Journal of Computer Science and Mobile Computing, vol. 3, no. 5, p.7, 2014.

C-H Teh and Roland T. Chin, “On the detection of dominant points on digital curves”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 8, pp. 859–872, 1989. https://doi.org/10.1109/34.31447

G. Bradski, G. “The openCV library”, Dr. Dobb's Journal: Software Tools for the Professional Programmer, vol. 25, no. 11, pp. 120-123, 2000.

M. J. P San Miguel, and C.R. Ruiz Jr, C. R. “Automatic Flood Detection Using the Video of Static Cameras”. In DLSU Research Congress. De La Salle University Manila, Philippines, 2016.

Author Biographies

Khairun Saddami, Universitas Syiah Kuala

Departement Electrical and Computer Engineering

Yudha Nurdin, Universitas Syiah Kuala

Department Electrical and Computer Engineering

Download this PDF file
PDF
Statistic
Read Counter : 14 Download : 18

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License