Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 1, February 2023
  4. Articles

Issue

Vol. 8, No. 1, February 2023

Issue Published : Feb 28, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Expert System for Predictive Maintenance Transformer using J48 Algorithm

https://doi.org/10.22219/kinetik.v8i1.1587
Erna Alimudin
Politeknik Negeri Cilacap
http://orcid.org/0000-0002-3788-0676
Arif Sumardiono
Politeknik Negeri Cilacap
Nur Budi Nugraha
Politeknik Negeri Indramayu

Corresponding Author(s) : Erna Alimudin

ernaalimudin@pnc.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 1, February 2023
Article Published : Feb 28, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Predictive maintenance can reduce the risk of sudden transformer failure which causes the risk of plant to stop operating. One of transformer predictive maintenance technique is the Dissolved Gas Analysis (DGA) Test Oil Transformer. The gas is interpreted and analyzed to find out and get conclusions about the health condition and also possible problems in the transformer based on IEEE Standards and IEC Standards. To facilitate monitoring, a Decision Support System for Interpretation of Test Results of DGA Oil Immersed Transformer was created to form a database containing transformer data with the amount of main gas from the DGA test results. Next, decision tree was made using the J48 algorithm. The decision tree simplifying and speed up the decision-making process for recommended actions that are displayed on the system. The system also displays a trending graph of the last transformer test and quickly displays a dashboard of transformer status, i.e. normal, alarm, or danger. Engineer will get notification email if any transformer is in danger status. In addition, the system is able to provide information on possible fault types for each transformer. The benefits of this system are that the health condition of the transformer can be monitored properly and corrective action can be taken immediately on a problem based on the results of the decision support system. This will reduce the risk of shutdown and support the reliability of plant operations.

Keywords

Transformer Decision Tree J48 Predictive Maintenance DGA Test
Alimudin, E., Sumardiono, A., & Nugraha, N. B. (2023). Expert System for Predictive Maintenance Transformer using J48 Algorithm. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(1), 445-452. https://doi.org/10.22219/kinetik.v8i1.1587
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. M. Kuncoro, Transformasi Pertamina: dilema antara orientasi bisnis & pelayanan publik. Galangpress Group, 2009.
  2. K. Rhenald and PT PERTAMINA (Persero), Mutasi DNA Powerhouse Pertamina on The Move. Jakarta: Gramedia, 2008.
  3. C. Zhang, Y. He, B. Du, L. Yuan, B. Li, and S. Jiang, “Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning,” Futur. Gener. Comput. Syst., vol. 108, pp. 533–545, 2020.
  4. S. C. Ko, T. H. Han, and S. H. Lim, “Dc current limiting operation and power burden characteristics of a flux-coupling type sfcl connected in series between two windings,” Electron., vol. 10, no. 9, 2021.
  5. C. Fjellstedt, M. I. Ullah, J. Forslund, E. Jonasson, I. Temiz, and K. Thomas, “A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources,” Energies, vol. 15, no. 16, 2022.
  6. A. Kadir, Transformator. 1989.
  7. D. M. Mehta, P. Kundu, A. Chowdhury, and V. K. Lakhiani, “DGA diagnostics save transformers - Case studies,” 2015 Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2015 - Proc., pp. 116–120, 2016.
  8. A. (Teknik E.-I. Chumaidy, “Analisis Kegagalan Minyak Isolasi pada Transformator Daya berbasis Kandungan Gas Terlarut,” J. FT, vol. 8, no. 2, pp. 41–54, 2012.
  9. N. Naibaho and (Teknik Elektro/Universitas Krisnadwipayana), “Analisis Kegagalan Transformator berdasarkan Hasil Pengujian DGA,” Semin. Nas. Energi dan Teknol., pp. 98–106, 2018.
  10. J. R. Jung, H. D. Seo, S. J. Kim, and S. W. Kim, “Advanced dissolved gas analysis (DGA) Diagnostic methods with estimation of fault location for power transformer based on field database,” CIGRE Sess. 46, vol. 2016-Augus, no. September, 2016.
  11. P. Mirowski and Y. Lecun, “Statistical machine learning and dissolved gas analysis: A review,” IEEE Trans. Power Deliv., vol. 27, no. 4, pp. 1791–1799, 2012.
  12. Transformers Committee of the IEEE Power Engineering Society, “IEEE Std C57.104TM-2008, IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformer,” 2008.
  13. International Electrotechnical Commission, “IEC Std 60599-1999, Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis,” 1999.
  14. N. Pattanadech, K. Sasomponsawatline, J. Siriworachanyadee, and W. Angsusatra, “The conformity of DGA interpretation techniques: Experience from transformer 132 units,” Proc. - IEEE Int. Conf. Dielectr. Liq., vol. 2019-June, no. Icdl, pp. 1–4, 2019.
  15. N. Mahmoudi, M. H. Samimi, and H. Mohseni, “Experiences with transformer diagnosis by DGA: case studies,” IET Gener. Transm. & Distrib., vol. 13, no. 23, pp. 5431–5439, 2019.
  16. R. Syahputra, Transmisi dan Distribusi Tenaga Listrik. 2016.
  17. Teguh Sulistyo (Pusat Reaktor Serba Guna/BATAN), “Pengkajian Kondisi Transformator BHT03 Pada RSG - Gas Menggunakan Metoda Dissolved Gas Analysis,” Sigma Epsil., vol. 18, no. 3, pp. 105–113, 2014.
  18. A. Pramono et al., “Analisis Minyak Transformator Daya Berdasarkan Dissolved Gas Analysis (DGA) Menggunakan Data Mining dengan Algoritma J48,” Telematika, vol. 9, no. 2, pp. 78–91, 2016.
  19. U. M. Rao, I. Fofana, A. Betie, M. L. Senoussaoui, M. Brahami, and E. Briosso, “Condition monitoring of in-service oil-filled transformers: Case studies and experience,” IEEE Electr. Insul. Mag., vol. 35, no. 6, pp. 33–42, 2019.
  20. A. D. Ashkezari, H. Ma, T. Saha, and C. Ekanayake, “Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 3, pp. 965–973, 2013.
  21. B. Zeng, J. Guo, W. Zhu, Z. Xiao, F. Yuan, and S. Huang, “A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM,” Energies, vol. 12, no. 21, 2019.
  22. A. G. Karegowda, A. S. Manjunath, G. Ratio, and C. F. Evaluation, “Comparative Study oOf Attribute Selection Using Gain Ratio,” vol. 2, no. 2, pp. 271–277, 2010.
  23. M. E. A. Senoussaoui, M. Brahami, and I. Fofana, “Combining and comparing various machinelearning algorithms to improve dissolved gas analysis interpretation,” IET Gener. Transm. Distrib., vol. 12, no. 15, pp. 3673–3679, 2018.
  24. N. Ardi, N. A. Setiawan, and T. Bharata Adji, “Analytical incremental learning for power transformer incipient fault diagnosis based on dissolved gas analysis,” Proc. - 2019 5th Int. Conf. Sci. Technol. ICST 2019, pp. 3–6, 2019.
  25. S. R. Siva and D. Prabha, “Prediction of customer behaviour analysis using classification algorithms,” in AIP Conference Proceedings 1952, 2018.
Read More

References


M. Kuncoro, Transformasi Pertamina: dilema antara orientasi bisnis & pelayanan publik. Galangpress Group, 2009.

K. Rhenald and PT PERTAMINA (Persero), Mutasi DNA Powerhouse Pertamina on The Move. Jakarta: Gramedia, 2008.

C. Zhang, Y. He, B. Du, L. Yuan, B. Li, and S. Jiang, “Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning,” Futur. Gener. Comput. Syst., vol. 108, pp. 533–545, 2020.

S. C. Ko, T. H. Han, and S. H. Lim, “Dc current limiting operation and power burden characteristics of a flux-coupling type sfcl connected in series between two windings,” Electron., vol. 10, no. 9, 2021.

C. Fjellstedt, M. I. Ullah, J. Forslund, E. Jonasson, I. Temiz, and K. Thomas, “A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources,” Energies, vol. 15, no. 16, 2022.

A. Kadir, Transformator. 1989.

D. M. Mehta, P. Kundu, A. Chowdhury, and V. K. Lakhiani, “DGA diagnostics save transformers - Case studies,” 2015 Int. Conf. Cond. Assess. Tech. Electr. Syst. CATCON 2015 - Proc., pp. 116–120, 2016.

A. (Teknik E.-I. Chumaidy, “Analisis Kegagalan Minyak Isolasi pada Transformator Daya berbasis Kandungan Gas Terlarut,” J. FT, vol. 8, no. 2, pp. 41–54, 2012.

N. Naibaho and (Teknik Elektro/Universitas Krisnadwipayana), “Analisis Kegagalan Transformator berdasarkan Hasil Pengujian DGA,” Semin. Nas. Energi dan Teknol., pp. 98–106, 2018.

J. R. Jung, H. D. Seo, S. J. Kim, and S. W. Kim, “Advanced dissolved gas analysis (DGA) Diagnostic methods with estimation of fault location for power transformer based on field database,” CIGRE Sess. 46, vol. 2016-Augus, no. September, 2016.

P. Mirowski and Y. Lecun, “Statistical machine learning and dissolved gas analysis: A review,” IEEE Trans. Power Deliv., vol. 27, no. 4, pp. 1791–1799, 2012.

Transformers Committee of the IEEE Power Engineering Society, “IEEE Std C57.104TM-2008, IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformer,” 2008.

International Electrotechnical Commission, “IEC Std 60599-1999, Mineral oil-impregnated electrical equipment in service - Guide to the interpretation of dissolved and free gases analysis,” 1999.

N. Pattanadech, K. Sasomponsawatline, J. Siriworachanyadee, and W. Angsusatra, “The conformity of DGA interpretation techniques: Experience from transformer 132 units,” Proc. - IEEE Int. Conf. Dielectr. Liq., vol. 2019-June, no. Icdl, pp. 1–4, 2019.

N. Mahmoudi, M. H. Samimi, and H. Mohseni, “Experiences with transformer diagnosis by DGA: case studies,” IET Gener. Transm. & Distrib., vol. 13, no. 23, pp. 5431–5439, 2019.

R. Syahputra, Transmisi dan Distribusi Tenaga Listrik. 2016.

Teguh Sulistyo (Pusat Reaktor Serba Guna/BATAN), “Pengkajian Kondisi Transformator BHT03 Pada RSG - Gas Menggunakan Metoda Dissolved Gas Analysis,” Sigma Epsil., vol. 18, no. 3, pp. 105–113, 2014.

A. Pramono et al., “Analisis Minyak Transformator Daya Berdasarkan Dissolved Gas Analysis (DGA) Menggunakan Data Mining dengan Algoritma J48,” Telematika, vol. 9, no. 2, pp. 78–91, 2016.

U. M. Rao, I. Fofana, A. Betie, M. L. Senoussaoui, M. Brahami, and E. Briosso, “Condition monitoring of in-service oil-filled transformers: Case studies and experience,” IEEE Electr. Insul. Mag., vol. 35, no. 6, pp. 33–42, 2019.

A. D. Ashkezari, H. Ma, T. Saha, and C. Ekanayake, “Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 3, pp. 965–973, 2013.

B. Zeng, J. Guo, W. Zhu, Z. Xiao, F. Yuan, and S. Huang, “A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM,” Energies, vol. 12, no. 21, 2019.

A. G. Karegowda, A. S. Manjunath, G. Ratio, and C. F. Evaluation, “Comparative Study oOf Attribute Selection Using Gain Ratio,” vol. 2, no. 2, pp. 271–277, 2010.

M. E. A. Senoussaoui, M. Brahami, and I. Fofana, “Combining and comparing various machinelearning algorithms to improve dissolved gas analysis interpretation,” IET Gener. Transm. Distrib., vol. 12, no. 15, pp. 3673–3679, 2018.

N. Ardi, N. A. Setiawan, and T. Bharata Adji, “Analytical incremental learning for power transformer incipient fault diagnosis based on dissolved gas analysis,” Proc. - 2019 5th Int. Conf. Sci. Technol. ICST 2019, pp. 3–6, 2019.

S. R. Siva and D. Prabha, “Prediction of customer behaviour analysis using classification algorithms,” in AIP Conference Proceedings 1952, 2018.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 10 Download : 23

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License