This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
PID Controller for DC-DC Converter under Dynamic Load Change in Photovoltaics based Low-Voltage DC Microgrid
Corresponding Author(s) : Made Andik Setiawan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 8, No. 1, February 2023
Abstract
Today, DC Microgrid gain more attraction due to increasing electronic digital devices application such smart-phones, smart-tvs, and other digital apparatus which are operated in DC form. In the common grid, the electric power from AC source is converted to DC voltage for powering the digital devices as load. Hence, there are power conversions from AC-DC and potentially loss energy during conversions. DC Microgrid consisted of sources, loads, distribution lines and energy storages. In small capacity DC Microgrid, the stability of the system is vulnerable by dynamic load change. During load demands fluctuations, the DC Microgrid voltage is also dynamically fluctuated and can reach over the designated rate. To solve this problem, the PID controller is introduced in the DC-DC converter for maintaining the voltage rate at designated value regardless the load demands. In this paper, the DC Microgrid is consisted of photovoltaics as DC sources, XL-6019 as DC-DC converter, Arduino as controller, voltage and current sensors, distribution lines and loads. The proposed method is evaluated via experimental results. The responses of the proposed method in the DC Microgrid system are presented, evaluated, discussed, and compared between with and without applied method. The experimental results indicate that the proposed method has ability to reduce the voltage profile fluctuations during load demands changes and in short time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lotfi and A. Khodaei, “AC Versus DC Microgrid Planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296–304, 2017, doi: 10.1109/TSG.2015.2457910.
- S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J. Emerg. Sel. Top. Power Electron., pp. 1–1, 2019, doi: 10.1109/JESTPE.2019.2904588.
- M. A. Setiawan, A. Abu-Siada, and F. Shahnia, “A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids,” IEEE Trans. Ind. Informatics, vol. 14, no. 4, pp. 1403–1414, 2018, doi: 10.1109/TII.2017.2761914.
- T. Hong and F. De Leó, “Centralized Unbalanced Dispatch of Smart Distribution dc Microgrid Systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2852–2861, 2018, doi: 10.1109/TSG.2016.2622681.
- A. R. Ichsan, M. Effendy, and D. Suhardi, “Studi Analisa Synchronous Rectifier Buck Converter Untuk Meningkatkan Efisiensi Daya Pada Sistem Photovoltaic,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 151–164, 2017, doi: 10.22219/kinetik.v2i3.201.
- M. A. Setiawan, Yudhi, and A. Febriansyah, “Power Control among Photovoltaics and Electric Energy Storages in DC Microgrid,” 2019. doi: 10.1109/ICSEEA47812.2019.8938647.
- G. P. Adam, T. K. Vrana, R. Li, P. Li, G. Burt, and S. Finney, “Review of technologies for DC grids – power conversion, flow control and protection,” IET Power Electron., vol. 12, no. 8, pp. 1851–1867, Jul. 2019, doi: 10.1049/iet-pel.2018.5719.
- S. Sreenu, J. Upendar, and B. Sirisha, “Analysis of switched impedance source/quasi-impedance source DC-DC converters for photovoltaic system,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 14, 2022, doi: 10.11591/ijape.v11.i1.pp14-24.
- S. Nor, A. Mohd, and M. Z. Sujod, “A multi-scale dual-stage model for PV array fault detection , classification , and monitoring technique,” Int. J. Appl. Power Eng., vol. 11, no. 2, pp. 134–144, 2022, doi: 10.11591/ijape.v11.i2.pp134-144.
- I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 23–34, 2022, doi: 10.22219/kinetik.v7i1.1355.
- K. Dehghanpour and H. Nehrir, “Real-Time Multiobjective Microgrid Power Management Using Distributed Optimization in an Agent-Based Bargaining Framework,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6318–6327, 2018, doi: 10.1109/TSG.2017.2708686.
- J. Ma, M. Zhu, X. Cai, and Y. Li, “DC Substation for DC Grid—Part I: Comparative Evaluation of DC Substation Configurations,” IEEE Trans. Power Electron., pp. 1–1, 2019, doi: 10.1109/TPEL.2019.2895043.
- W. Meng, X. Wang, and S. Liu, “Distributed Load Sharing of an Inverter-Based Microgrid with Reduced Communication,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1354–1364, 2018, doi: 10.1109/TSG.2016.2587685.
- S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 743–759, Mar. 2019, doi: 10.1049/iet-gtd.2018.5212.
- F. Wang;, M. Alshareef, Z. Lin, and F. Li, “A grid interface current control strategy for DC microgrids,” CES Trans. Electr. Mach. Syst., vol. 5, no. 3, 2021, doi: 10.30941/CESTEMS.2021.00028.
- F. N. Budiman and M. R. Ramadhani, “Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 3, pp. 191–202, 2018, doi: 10.22219/kinetik.v3i3.617.
- Y. Zhang and Y. Li, “Energy Management Strategy for Supercapacitor Virtual Impedance,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2704–2716, 2017, doi: 10.1109/TPEL.2016.2571308.
- M. Khadem and M. Karami, “Demand response planning in capacity market using microgrid,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 7, 2022, doi: 10.11591/ijape.v11.i1.pp7-13.
- I. Sudiharto, E. Wahjono, and L. N. F. R. Lugiana, “Design and Simulation of Utilization of Solar Cells as Battery Chargers CC-CV (Constant Current-Constant Voltage) Method with Fuzzy Control,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 2, 2022, doi: 10.22219/kinetik.v7i2.1448.
- I. Sudiharto, E. Prasetyono, A. Budikarso, and S. FitriaDevi, “A Modified Maximum Power Point Tracking with Constant Power Generation Using Adaptive Neuro-Fuzzy Inference System Algorithm,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2022, doi: 10.22219/kinetik.v7i3.1452.
- Francisco Daniel Esteban, F. M. Serra, and C. H. De Angelo, “Control of a DC-DC Dual Active Bridge Converter in DC Microgrids Applications,” IEEE Lat. Am. Trans., vol. 19, no. 8, 2021, doi: 10.1109/TLA.2021.9475856.
- Y. Gui, R. Han, J. M. Guerrero, J. C. Vasquez, and B. Wei, “Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid,” IEEE Trans. Energy Convers., vol. 36, no. 3, 2021, doi: 10.1109/TEC.2021.3057130.
- E. Dyah Atsari and A. Halim, “Design of a Fractional Order PID Controller for Electric Hydraulic Actuator,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, pp. 59–68, 2021, doi: 10.22219/kinetik.v6i1.1151.
- M. Fauziyah, S. Adhisuwignjo, L. N. Ifa, and B. F. Afandi, “DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 45–54, 2022, doi: 10.22219/kinetik.v7i1.1352.
- A. C. Utomo, P. Siwindarto, and O. Setyawati, “Reduced Overshoot of The Electroforming Jewellery Process Using PID,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 227–234, 2020, doi: 10.22219/kinetik.v5i3.1059.
References
H. Lotfi and A. Khodaei, “AC Versus DC Microgrid Planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296–304, 2017, doi: 10.1109/TSG.2015.2457910.
S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J. Emerg. Sel. Top. Power Electron., pp. 1–1, 2019, doi: 10.1109/JESTPE.2019.2904588.
M. A. Setiawan, A. Abu-Siada, and F. Shahnia, “A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids,” IEEE Trans. Ind. Informatics, vol. 14, no. 4, pp. 1403–1414, 2018, doi: 10.1109/TII.2017.2761914.
T. Hong and F. De Leó, “Centralized Unbalanced Dispatch of Smart Distribution dc Microgrid Systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2852–2861, 2018, doi: 10.1109/TSG.2016.2622681.
A. R. Ichsan, M. Effendy, and D. Suhardi, “Studi Analisa Synchronous Rectifier Buck Converter Untuk Meningkatkan Efisiensi Daya Pada Sistem Photovoltaic,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 151–164, 2017, doi: 10.22219/kinetik.v2i3.201.
M. A. Setiawan, Yudhi, and A. Febriansyah, “Power Control among Photovoltaics and Electric Energy Storages in DC Microgrid,” 2019. doi: 10.1109/ICSEEA47812.2019.8938647.
G. P. Adam, T. K. Vrana, R. Li, P. Li, G. Burt, and S. Finney, “Review of technologies for DC grids – power conversion, flow control and protection,” IET Power Electron., vol. 12, no. 8, pp. 1851–1867, Jul. 2019, doi: 10.1049/iet-pel.2018.5719.
S. Sreenu, J. Upendar, and B. Sirisha, “Analysis of switched impedance source/quasi-impedance source DC-DC converters for photovoltaic system,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 14, 2022, doi: 10.11591/ijape.v11.i1.pp14-24.
S. Nor, A. Mohd, and M. Z. Sujod, “A multi-scale dual-stage model for PV array fault detection , classification , and monitoring technique,” Int. J. Appl. Power Eng., vol. 11, no. 2, pp. 134–144, 2022, doi: 10.11591/ijape.v11.i2.pp134-144.
I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 23–34, 2022, doi: 10.22219/kinetik.v7i1.1355.
K. Dehghanpour and H. Nehrir, “Real-Time Multiobjective Microgrid Power Management Using Distributed Optimization in an Agent-Based Bargaining Framework,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6318–6327, 2018, doi: 10.1109/TSG.2017.2708686.
J. Ma, M. Zhu, X. Cai, and Y. Li, “DC Substation for DC Grid—Part I: Comparative Evaluation of DC Substation Configurations,” IEEE Trans. Power Electron., pp. 1–1, 2019, doi: 10.1109/TPEL.2019.2895043.
W. Meng, X. Wang, and S. Liu, “Distributed Load Sharing of an Inverter-Based Microgrid with Reduced Communication,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1354–1364, 2018, doi: 10.1109/TSG.2016.2587685.
S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 743–759, Mar. 2019, doi: 10.1049/iet-gtd.2018.5212.
F. Wang;, M. Alshareef, Z. Lin, and F. Li, “A grid interface current control strategy for DC microgrids,” CES Trans. Electr. Mach. Syst., vol. 5, no. 3, 2021, doi: 10.30941/CESTEMS.2021.00028.
F. N. Budiman and M. R. Ramadhani, “Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 3, pp. 191–202, 2018, doi: 10.22219/kinetik.v3i3.617.
Y. Zhang and Y. Li, “Energy Management Strategy for Supercapacitor Virtual Impedance,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2704–2716, 2017, doi: 10.1109/TPEL.2016.2571308.
M. Khadem and M. Karami, “Demand response planning in capacity market using microgrid,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 7, 2022, doi: 10.11591/ijape.v11.i1.pp7-13.
I. Sudiharto, E. Wahjono, and L. N. F. R. Lugiana, “Design and Simulation of Utilization of Solar Cells as Battery Chargers CC-CV (Constant Current-Constant Voltage) Method with Fuzzy Control,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 2, 2022, doi: 10.22219/kinetik.v7i2.1448.
I. Sudiharto, E. Prasetyono, A. Budikarso, and S. FitriaDevi, “A Modified Maximum Power Point Tracking with Constant Power Generation Using Adaptive Neuro-Fuzzy Inference System Algorithm,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2022, doi: 10.22219/kinetik.v7i3.1452.
Francisco Daniel Esteban, F. M. Serra, and C. H. De Angelo, “Control of a DC-DC Dual Active Bridge Converter in DC Microgrids Applications,” IEEE Lat. Am. Trans., vol. 19, no. 8, 2021, doi: 10.1109/TLA.2021.9475856.
Y. Gui, R. Han, J. M. Guerrero, J. C. Vasquez, and B. Wei, “Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid,” IEEE Trans. Energy Convers., vol. 36, no. 3, 2021, doi: 10.1109/TEC.2021.3057130.
E. Dyah Atsari and A. Halim, “Design of a Fractional Order PID Controller for Electric Hydraulic Actuator,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, pp. 59–68, 2021, doi: 10.22219/kinetik.v6i1.1151.
M. Fauziyah, S. Adhisuwignjo, L. N. Ifa, and B. F. Afandi, “DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 45–54, 2022, doi: 10.22219/kinetik.v7i1.1352.
A. C. Utomo, P. Siwindarto, and O. Setyawati, “Reduced Overshoot of The Electroforming Jewellery Process Using PID,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 227–234, 2020, doi: 10.22219/kinetik.v5i3.1059.