Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 8, No. 1, February 2023
  4. Articles

Issue

Vol. 8, No. 1, February 2023

Issue Published : Feb 28, 2023
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

PID Controller for DC-DC Converter under Dynamic Load Change in Photovoltaics based Low-Voltage DC Microgrid

https://doi.org/10.22219/kinetik.v8i1.1582
Made Andik Setiawan
Politeknik Manufaktur Negeri Bangka Belitung
https://orcid.org/0000-0002-7334-1338
Fahmi Hidayat
Politeknik Manufaktur Negeri Bangka Belitung
Ela Sari
Politeknik Manufaktur Negeri Bangka Belitung

Corresponding Author(s) : Made Andik Setiawan

made.andik.s@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 8, No. 1, February 2023
Article Published : Feb 28, 2023

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Today, DC Microgrid gain more attraction due to increasing electronic digital devices application such smart-phones, smart-tvs, and other digital apparatus which are operated in DC form. In the common grid, the electric power from AC source is converted to DC voltage for powering the digital devices as load. Hence, there are power conversions from AC-DC and potentially loss energy during conversions. DC Microgrid consisted of sources, loads, distribution lines and energy storages. In small capacity DC Microgrid, the stability of the system is vulnerable by dynamic load change. During load demands fluctuations, the DC Microgrid voltage is also dynamically fluctuated and can reach over the designated rate. To solve this problem, the PID controller is introduced in the DC-DC converter for maintaining the voltage rate at designated value regardless the load demands. In this paper, the DC Microgrid is consisted of photovoltaics as DC sources, XL-6019 as DC-DC converter, Arduino as controller, voltage and current sensors, distribution lines and loads. The proposed method is evaluated via experimental results. The responses of the proposed method in the DC Microgrid system are presented, evaluated, discussed, and compared between with and without applied method. The experimental results indicate that the proposed method has ability to reduce the voltage profile fluctuations during load demands changes and in short time.

Keywords

DC-DC Converter Microgrid Low Voltage Control PID Controller
Setiawan, M. A., Hidayat, F., & Sari, E. (2023). PID Controller for DC-DC Converter under Dynamic Load Change in Photovoltaics based Low-Voltage DC Microgrid. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 8(1), 421-428. https://doi.org/10.22219/kinetik.v8i1.1582
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. H. Lotfi and A. Khodaei, “AC Versus DC Microgrid Planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296–304, 2017, doi: 10.1109/TSG.2015.2457910.
  2. S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J. Emerg. Sel. Top. Power Electron., pp. 1–1, 2019, doi: 10.1109/JESTPE.2019.2904588.
  3. M. A. Setiawan, A. Abu-Siada, and F. Shahnia, “A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids,” IEEE Trans. Ind. Informatics, vol. 14, no. 4, pp. 1403–1414, 2018, doi: 10.1109/TII.2017.2761914.
  4. T. Hong and F. De Leó, “Centralized Unbalanced Dispatch of Smart Distribution dc Microgrid Systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2852–2861, 2018, doi: 10.1109/TSG.2016.2622681.
  5. A. R. Ichsan, M. Effendy, and D. Suhardi, “Studi Analisa Synchronous Rectifier Buck Converter Untuk Meningkatkan Efisiensi Daya Pada Sistem Photovoltaic,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 151–164, 2017, doi: 10.22219/kinetik.v2i3.201.
  6. M. A. Setiawan, Yudhi, and A. Febriansyah, “Power Control among Photovoltaics and Electric Energy Storages in DC Microgrid,” 2019. doi: 10.1109/ICSEEA47812.2019.8938647.
  7. G. P. Adam, T. K. Vrana, R. Li, P. Li, G. Burt, and S. Finney, “Review of technologies for DC grids – power conversion, flow control and protection,” IET Power Electron., vol. 12, no. 8, pp. 1851–1867, Jul. 2019, doi: 10.1049/iet-pel.2018.5719.
  8. S. Sreenu, J. Upendar, and B. Sirisha, “Analysis of switched impedance source/quasi-impedance source DC-DC converters for photovoltaic system,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 14, 2022, doi: 10.11591/ijape.v11.i1.pp14-24.
  9. S. Nor, A. Mohd, and M. Z. Sujod, “A multi-scale dual-stage model for PV array fault detection , classification , and monitoring technique,” Int. J. Appl. Power Eng., vol. 11, no. 2, pp. 134–144, 2022, doi: 10.11591/ijape.v11.i2.pp134-144.
  10. I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 23–34, 2022, doi: 10.22219/kinetik.v7i1.1355.
  11. K. Dehghanpour and H. Nehrir, “Real-Time Multiobjective Microgrid Power Management Using Distributed Optimization in an Agent-Based Bargaining Framework,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6318–6327, 2018, doi: 10.1109/TSG.2017.2708686.
  12. J. Ma, M. Zhu, X. Cai, and Y. Li, “DC Substation for DC Grid—Part I: Comparative Evaluation of DC Substation Configurations,” IEEE Trans. Power Electron., pp. 1–1, 2019, doi: 10.1109/TPEL.2019.2895043.
  13. W. Meng, X. Wang, and S. Liu, “Distributed Load Sharing of an Inverter-Based Microgrid with Reduced Communication,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1354–1364, 2018, doi: 10.1109/TSG.2016.2587685.
  14. S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 743–759, Mar. 2019, doi: 10.1049/iet-gtd.2018.5212.
  15. F. Wang;, M. Alshareef, Z. Lin, and F. Li, “A grid interface current control strategy for DC microgrids,” CES Trans. Electr. Mach. Syst., vol. 5, no. 3, 2021, doi: 10.30941/CESTEMS.2021.00028.
  16. F. N. Budiman and M. R. Ramadhani, “Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 3, pp. 191–202, 2018, doi: 10.22219/kinetik.v3i3.617.
  17. Y. Zhang and Y. Li, “Energy Management Strategy for Supercapacitor Virtual Impedance,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2704–2716, 2017, doi: 10.1109/TPEL.2016.2571308.
  18. M. Khadem and M. Karami, “Demand response planning in capacity market using microgrid,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 7, 2022, doi: 10.11591/ijape.v11.i1.pp7-13.
  19. I. Sudiharto, E. Wahjono, and L. N. F. R. Lugiana, “Design and Simulation of Utilization of Solar Cells as Battery Chargers CC-CV (Constant Current-Constant Voltage) Method with Fuzzy Control,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 2, 2022, doi: 10.22219/kinetik.v7i2.1448.
  20. I. Sudiharto, E. Prasetyono, A. Budikarso, and S. FitriaDevi, “A Modified Maximum Power Point Tracking with Constant Power Generation Using Adaptive Neuro-Fuzzy Inference System Algorithm,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2022, doi: 10.22219/kinetik.v7i3.1452.
  21. Francisco Daniel Esteban, F. M. Serra, and C. H. De Angelo, “Control of a DC-DC Dual Active Bridge Converter in DC Microgrids Applications,” IEEE Lat. Am. Trans., vol. 19, no. 8, 2021, doi: 10.1109/TLA.2021.9475856.
  22. Y. Gui, R. Han, J. M. Guerrero, J. C. Vasquez, and B. Wei, “Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid,” IEEE Trans. Energy Convers., vol. 36, no. 3, 2021, doi: 10.1109/TEC.2021.3057130.
  23. E. Dyah Atsari and A. Halim, “Design of a Fractional Order PID Controller for Electric Hydraulic Actuator,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, pp. 59–68, 2021, doi: 10.22219/kinetik.v6i1.1151.
  24. M. Fauziyah, S. Adhisuwignjo, L. N. Ifa, and B. F. Afandi, “DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 45–54, 2022, doi: 10.22219/kinetik.v7i1.1352.
  25. A. C. Utomo, P. Siwindarto, and O. Setyawati, “Reduced Overshoot of The Electroforming Jewellery Process Using PID,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 227–234, 2020, doi: 10.22219/kinetik.v5i3.1059.
Read More

References


H. Lotfi and A. Khodaei, “AC Versus DC Microgrid Planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296–304, 2017, doi: 10.1109/TSG.2015.2457910.

S. Beheshtaein, R. M. Cuzner, M. Forouzesh, M. Savaghebi, and J. M. Guerrero, “DC Microgrid Protection: A Comprehensive Review,” IEEE J. Emerg. Sel. Top. Power Electron., pp. 1–1, 2019, doi: 10.1109/JESTPE.2019.2904588.

M. A. Setiawan, A. Abu-Siada, and F. Shahnia, “A New Technique for Simultaneous Load Current Sharing and Voltage Regulation in DC Microgrids,” IEEE Trans. Ind. Informatics, vol. 14, no. 4, pp. 1403–1414, 2018, doi: 10.1109/TII.2017.2761914.

T. Hong and F. De Leó, “Centralized Unbalanced Dispatch of Smart Distribution dc Microgrid Systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2852–2861, 2018, doi: 10.1109/TSG.2016.2622681.

A. R. Ichsan, M. Effendy, and D. Suhardi, “Studi Analisa Synchronous Rectifier Buck Converter Untuk Meningkatkan Efisiensi Daya Pada Sistem Photovoltaic,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 2, no. 3, pp. 151–164, 2017, doi: 10.22219/kinetik.v2i3.201.

M. A. Setiawan, Yudhi, and A. Febriansyah, “Power Control among Photovoltaics and Electric Energy Storages in DC Microgrid,” 2019. doi: 10.1109/ICSEEA47812.2019.8938647.

G. P. Adam, T. K. Vrana, R. Li, P. Li, G. Burt, and S. Finney, “Review of technologies for DC grids – power conversion, flow control and protection,” IET Power Electron., vol. 12, no. 8, pp. 1851–1867, Jul. 2019, doi: 10.1049/iet-pel.2018.5719.

S. Sreenu, J. Upendar, and B. Sirisha, “Analysis of switched impedance source/quasi-impedance source DC-DC converters for photovoltaic system,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 14, 2022, doi: 10.11591/ijape.v11.i1.pp14-24.

S. Nor, A. Mohd, and M. Z. Sujod, “A multi-scale dual-stage model for PV array fault detection , classification , and monitoring technique,” Int. J. Appl. Power Eng., vol. 11, no. 2, pp. 134–144, 2022, doi: 10.11591/ijape.v11.i2.pp134-144.

I. Rullah, R. K. Harahap, E. P. Wibowo, A. I. Sukowati, D. Nur’ainingsih, and W. Widyastuti, “Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 23–34, 2022, doi: 10.22219/kinetik.v7i1.1355.

K. Dehghanpour and H. Nehrir, “Real-Time Multiobjective Microgrid Power Management Using Distributed Optimization in an Agent-Based Bargaining Framework,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6318–6327, 2018, doi: 10.1109/TSG.2017.2708686.

J. Ma, M. Zhu, X. Cai, and Y. Li, “DC Substation for DC Grid—Part I: Comparative Evaluation of DC Substation Configurations,” IEEE Trans. Power Electron., pp. 1–1, 2019, doi: 10.1109/TPEL.2019.2895043.

W. Meng, X. Wang, and S. Liu, “Distributed Load Sharing of an Inverter-Based Microgrid with Reduced Communication,” IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1354–1364, 2018, doi: 10.1109/TSG.2016.2587685.

S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 743–759, Mar. 2019, doi: 10.1049/iet-gtd.2018.5212.

F. Wang;, M. Alshareef, Z. Lin, and F. Li, “A grid interface current control strategy for DC microgrids,” CES Trans. Electr. Mach. Syst., vol. 5, no. 3, 2021, doi: 10.30941/CESTEMS.2021.00028.

F. N. Budiman and M. R. Ramadhani, “Total Harmonic Distortion Comparison between Sinusoidal PWM Inverter and Multilevel Inverter in Solar Panel,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 3, pp. 191–202, 2018, doi: 10.22219/kinetik.v3i3.617.

Y. Zhang and Y. Li, “Energy Management Strategy for Supercapacitor Virtual Impedance,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2704–2716, 2017, doi: 10.1109/TPEL.2016.2571308.

M. Khadem and M. Karami, “Demand response planning in capacity market using microgrid,” Int. J. Appl. Power Eng., vol. 11, no. 1, p. 7, 2022, doi: 10.11591/ijape.v11.i1.pp7-13.

I. Sudiharto, E. Wahjono, and L. N. F. R. Lugiana, “Design and Simulation of Utilization of Solar Cells as Battery Chargers CC-CV (Constant Current-Constant Voltage) Method with Fuzzy Control,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 2, 2022, doi: 10.22219/kinetik.v7i2.1448.

I. Sudiharto, E. Prasetyono, A. Budikarso, and S. FitriaDevi, “A Modified Maximum Power Point Tracking with Constant Power Generation Using Adaptive Neuro-Fuzzy Inference System Algorithm,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 277–288, 2022, doi: 10.22219/kinetik.v7i3.1452.

Francisco Daniel Esteban, F. M. Serra, and C. H. De Angelo, “Control of a DC-DC Dual Active Bridge Converter in DC Microgrids Applications,” IEEE Lat. Am. Trans., vol. 19, no. 8, 2021, doi: 10.1109/TLA.2021.9475856.

Y. Gui, R. Han, J. M. Guerrero, J. C. Vasquez, and B. Wei, “Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid,” IEEE Trans. Energy Convers., vol. 36, no. 3, 2021, doi: 10.1109/TEC.2021.3057130.

E. Dyah Atsari and A. Halim, “Design of a Fractional Order PID Controller for Electric Hydraulic Actuator,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, pp. 59–68, 2021, doi: 10.22219/kinetik.v6i1.1151.

M. Fauziyah, S. Adhisuwignjo, L. N. Ifa, and B. F. Afandi, “DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 1, pp. 45–54, 2022, doi: 10.22219/kinetik.v7i1.1352.

A. C. Utomo, P. Siwindarto, and O. Setyawati, “Reduced Overshoot of The Electroforming Jewellery Process Using PID,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 227–234, 2020, doi: 10.22219/kinetik.v5i3.1059.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 10 Download : 18

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License