This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
PID Controllers Performance On Dual Axis Tracking With Tetrahedron Based Sensor
Corresponding Author(s) : Melinda
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 7, No. 4, November 2022
Abstract
This study compares control systems applied to a dual-axis tetrahedron-based sensor tracker. A tetrahedron-based sensor is a tracking sensor that can detect the coordinates of a light source. This study aims to determine a control system that can control sensors with high accuracy and precision and has a fast-tracking ability. Tests are carried out periodically by providing light at certain coordinates. After carrying out the testing and analysis process, it is concluded that the P controller is a better control system than the other controllers. This controller can control sensors with high accuracy and precision compared to PI, PD, and PID control systems. The P controller can also control the sensor to move towards the light coordinates with a travel time of 1.6 seconds on the X-axis and 3.1 seconds on the Y-axis, with a MAE value of 1.1 on the X-axis and 0.3 on the Y-axis. While the RSME value obtained is 1.33 on the X-axis and 0.55 on the Y-axis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Guan, Y., Gang, C., & Ren, J. (2015). Cooperative solar tracking control of multiple dual-axis PV panels. 7th Chinese Control and Decision Conference (CCDC), 4058–4063. https://doi.org/10.1109/CCDC.2015.7162634
- Pivoňka, P. (2002). Comparative Analysis of Fuzzy PI/PD/PID Controller Based on Classical PID Controller Approach. IEEE International Conference on Fuzzy Systems, 1, 541–546. https://doi.org/10.1109/fuzz.2002.1005048
- Doss C.r., J., Kumaravel, M., & Jagadeesh Kumar, V. (2013). A Novel Measurement Technique for Performance Comparison of Sun Tracker Systems. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1156–1160. https://doi.org/10.1109/I2MTC.2013.6555595
- Away, Y., & Ikhsan, M. (2017). Dual-axis sun tracker sensor based on tetrahedron geometry. Automation in Construction, 73, 175–183. https://doi.org/10.1016/j.autcon.2016.10.009
- Away, Y., Rahman, A., Auliandra, T. R., & Firdaus, M. (2018). Performance Comparison between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor. International Conference on Electrical Engineering and Informatics, ICELTICs, 40–44. https://doi.org/10.1109/ICELTICS.2018.8548837
- Gaballa, M. S., Bahgat, M., & Abdel-Ghany, A. G. M. (2018). Self-Tuning of An FLC-PID Controller of A Dual-Axis Sun Tracker Photo-Voltaic Panel Based on Rise-Time-Observer Method. 19th International Middle-East Power Systems Conference (MEPCON), 722–727. https://doi.org/10.1109/MEPCON.2017.8301261
- Aung, C. A., Hote, Y. V., Pillai, G., & Jain, S. (2020). PID Controller Design for Solar Tracker via Modified Ziegler Nichols Rules. 2nd International Conference on Smart Power and Internet Energy Systems, 531–536. https://doi.org/10.1109/SPIES48661.2020.9243009
- Kumngern, M., & Torteanchai, U. (2014). FDCCII-Based P, PI, PD and PID Controllers. Fourth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), 415–418. https://doi.org/10.1109/DICTAP.2014.6821722
- Rizvi, A. A., Addoweesh, K., Abdelrehman, E.-L., & Al-Ansary, H. (2014). Sun Position Algorithm for Sun Tracking Applications. Annual Conference of the IEEE Industrial Electronics Society, 5595–5598. https://doi.org/10.1109/IECON.2014.7049356
- Pati, S., Patnaik, M., & Panda, A. (2014). Comparative Performance Analysis of Fuzzy PI, PD and PID Controllers Used in A Scalar Controlled Induction Motor Drive. International Conference on Circuits, Power and Computing Technologies (ICCPCT), 910–915. https://doi.org/10.1109/ICCPCT.2014.7054799
- Liu, C., Zhao, F. Y., Hu, P., Hou, S., & Li, C. (2010). P Controller with Partial Feed Forward Compensation and Decoupling Control for The Steam Generator Water Level. Nuclear Engineering and Design, 240(1), 181–190. https://doi.org/10.1016/j.nucengdes.2009.09.014
- Tan, N. (2009). Computation of Stabilizing PI-PD Controllers. International Journal of Control, Automation and Systems, 7(2), 175–184. https://doi.org/10.1007/s12555-009-0203-y
- Wang, Y. G., & Shao, H. H. (2000). Optimal Tuning for PI Controller. Automatica, 36(1), 147–152. https://doi.org/10.1016/S0005-1098(99)00130-2
- Tomei, P. (1991a). A Simple PD Controller for A Robot with Elastic Joints. IEEE Transactions on Automatic Control, 36(10), 1208–1213. https://doi.org/10.1109/9.90238
- Suruz Miah, M., & Gueaieb, W. (2014). Optimal Time-Varying P-Controller for A Class of Uncertain Nonlinear Systems. International Journal of Control, Automation and Systems, 12(4), 722–732. https://doi.org/10.1007/s12555-013-0234-2
- Sánchez, J., Visioli, A., & Dormido, S. (2011). A Two-Degree-of-Freedom PI Controller Based on Events. Journal of Process Control, 21(4), 639–651. https://doi.org/10.1016/j.jprocont.2010.12.001
- Ramirez, H. S. (1991). Nonliniear P-I Controller Design for Switchmode DC-to-DC Power Converters. IEEE Transactions on Circuit and System, 38(4), 410–417. https://doi.org/10.1109/31.75397
- Tomei, P. (1991b). Adaptive PD Controller for Robot Manipulators. IEEE Transactions on Robotics and Automation, 7(4), 565–570. https://doi.org/10.1109/70.86088
- Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2012). PID Controller Tuning Techniques: A Review. Journal of Control Engineering and Technology, 2(May), 168–176.
- Shah, P., & Agashe, S. (2016). Review of Fractional PID Controller. Mechatronics, 38, 29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005
- Dawson, D. M., Qu, Z., Lewis, F. L., & Dorsey, J. F. (1990). Robust Control for The Tracking of Robot Motion. International Journal of Control, 52(3), 581–595. https://doi.org/10.1080/00207179008953554
- Sabir, M. M., & Ali, T. (2016). Optimal PID Controller Design Through Swarm Intelligence Algorithms for Sun Tracking System. Applied Mathematics and Computation, 274, 690–699. https://doi.org/10.1016/j.amc.2015.11.036
- Jia, R., Nandikolla, V. K., Haggart, G., Volk, C., & Tazartes, D. (2017). System Performance of an Inertially Stabilized Gimbal Platform with Friction, Resonance, and Vibration Effects. Journal of Nonlinear Dynamics, 2017, 1–20. https://doi.org/10.1155/2017/6594861
- Fauziyah, M., Adhisuwignjo, S., Ifa, L. N., & Afandi, B. F. (2022). DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(1), 45–54. https://doi.org/10.22219/kinetik.v7i1.1352
- Wu, H., Su, W., & Liu, Z. (2014). PID Controllers: Design and Tuning Methods. 9th IEEE Conference on Industrial Electronics and Applications, 808–813. https://doi.org/10.1109/ICIEA.2014.6931273
- Abdo, M. M., Vali, A. R., Toloei, A. R., & Arvan, M. R. (2014). Stabilization Loop of A Two Axes Gimbal System Using Self-Tuning PID Type Fuzzy Controller. ISA Transactions, 53(2), 591–602. https://doi.org/10.1016/j.isatra.2013.12.008
- Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1). https://doi.org/10.1088/1757-899X/324/1/012049
- Azmi, S., Away, Y., & Sara, I. D. (2016). Kajian Aspek Kecepatan dan Ketepatan pada Sun Tracker Dua Sumbu Berbasis Sensor Berbentuk Tetrahedron. Jurnal Rekayasa Elektro, 15(2), 1–9. https://doi.org/10.17529/jre.v15i2.13546
References
Guan, Y., Gang, C., & Ren, J. (2015). Cooperative solar tracking control of multiple dual-axis PV panels. 7th Chinese Control and Decision Conference (CCDC), 4058–4063. https://doi.org/10.1109/CCDC.2015.7162634
Pivoňka, P. (2002). Comparative Analysis of Fuzzy PI/PD/PID Controller Based on Classical PID Controller Approach. IEEE International Conference on Fuzzy Systems, 1, 541–546. https://doi.org/10.1109/fuzz.2002.1005048
Doss C.r., J., Kumaravel, M., & Jagadeesh Kumar, V. (2013). A Novel Measurement Technique for Performance Comparison of Sun Tracker Systems. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1156–1160. https://doi.org/10.1109/I2MTC.2013.6555595
Away, Y., & Ikhsan, M. (2017). Dual-axis sun tracker sensor based on tetrahedron geometry. Automation in Construction, 73, 175–183. https://doi.org/10.1016/j.autcon.2016.10.009
Away, Y., Rahman, A., Auliandra, T. R., & Firdaus, M. (2018). Performance Comparison between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor. International Conference on Electrical Engineering and Informatics, ICELTICs, 40–44. https://doi.org/10.1109/ICELTICS.2018.8548837
Gaballa, M. S., Bahgat, M., & Abdel-Ghany, A. G. M. (2018). Self-Tuning of An FLC-PID Controller of A Dual-Axis Sun Tracker Photo-Voltaic Panel Based on Rise-Time-Observer Method. 19th International Middle-East Power Systems Conference (MEPCON), 722–727. https://doi.org/10.1109/MEPCON.2017.8301261
Aung, C. A., Hote, Y. V., Pillai, G., & Jain, S. (2020). PID Controller Design for Solar Tracker via Modified Ziegler Nichols Rules. 2nd International Conference on Smart Power and Internet Energy Systems, 531–536. https://doi.org/10.1109/SPIES48661.2020.9243009
Kumngern, M., & Torteanchai, U. (2014). FDCCII-Based P, PI, PD and PID Controllers. Fourth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), 415–418. https://doi.org/10.1109/DICTAP.2014.6821722
Rizvi, A. A., Addoweesh, K., Abdelrehman, E.-L., & Al-Ansary, H. (2014). Sun Position Algorithm for Sun Tracking Applications. Annual Conference of the IEEE Industrial Electronics Society, 5595–5598. https://doi.org/10.1109/IECON.2014.7049356
Pati, S., Patnaik, M., & Panda, A. (2014). Comparative Performance Analysis of Fuzzy PI, PD and PID Controllers Used in A Scalar Controlled Induction Motor Drive. International Conference on Circuits, Power and Computing Technologies (ICCPCT), 910–915. https://doi.org/10.1109/ICCPCT.2014.7054799
Liu, C., Zhao, F. Y., Hu, P., Hou, S., & Li, C. (2010). P Controller with Partial Feed Forward Compensation and Decoupling Control for The Steam Generator Water Level. Nuclear Engineering and Design, 240(1), 181–190. https://doi.org/10.1016/j.nucengdes.2009.09.014
Tan, N. (2009). Computation of Stabilizing PI-PD Controllers. International Journal of Control, Automation and Systems, 7(2), 175–184. https://doi.org/10.1007/s12555-009-0203-y
Wang, Y. G., & Shao, H. H. (2000). Optimal Tuning for PI Controller. Automatica, 36(1), 147–152. https://doi.org/10.1016/S0005-1098(99)00130-2
Tomei, P. (1991a). A Simple PD Controller for A Robot with Elastic Joints. IEEE Transactions on Automatic Control, 36(10), 1208–1213. https://doi.org/10.1109/9.90238
Suruz Miah, M., & Gueaieb, W. (2014). Optimal Time-Varying P-Controller for A Class of Uncertain Nonlinear Systems. International Journal of Control, Automation and Systems, 12(4), 722–732. https://doi.org/10.1007/s12555-013-0234-2
Sánchez, J., Visioli, A., & Dormido, S. (2011). A Two-Degree-of-Freedom PI Controller Based on Events. Journal of Process Control, 21(4), 639–651. https://doi.org/10.1016/j.jprocont.2010.12.001
Ramirez, H. S. (1991). Nonliniear P-I Controller Design for Switchmode DC-to-DC Power Converters. IEEE Transactions on Circuit and System, 38(4), 410–417. https://doi.org/10.1109/31.75397
Tomei, P. (1991b). Adaptive PD Controller for Robot Manipulators. IEEE Transactions on Robotics and Automation, 7(4), 565–570. https://doi.org/10.1109/70.86088
Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2012). PID Controller Tuning Techniques: A Review. Journal of Control Engineering and Technology, 2(May), 168–176.
Shah, P., & Agashe, S. (2016). Review of Fractional PID Controller. Mechatronics, 38, 29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005
Dawson, D. M., Qu, Z., Lewis, F. L., & Dorsey, J. F. (1990). Robust Control for The Tracking of Robot Motion. International Journal of Control, 52(3), 581–595. https://doi.org/10.1080/00207179008953554
Sabir, M. M., & Ali, T. (2016). Optimal PID Controller Design Through Swarm Intelligence Algorithms for Sun Tracking System. Applied Mathematics and Computation, 274, 690–699. https://doi.org/10.1016/j.amc.2015.11.036
Jia, R., Nandikolla, V. K., Haggart, G., Volk, C., & Tazartes, D. (2017). System Performance of an Inertially Stabilized Gimbal Platform with Friction, Resonance, and Vibration Effects. Journal of Nonlinear Dynamics, 2017, 1–20. https://doi.org/10.1155/2017/6594861
Fauziyah, M., Adhisuwignjo, S., Ifa, L. N., & Afandi, B. F. (2022). DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(1), 45–54. https://doi.org/10.22219/kinetik.v7i1.1352
Wu, H., Su, W., & Liu, Z. (2014). PID Controllers: Design and Tuning Methods. 9th IEEE Conference on Industrial Electronics and Applications, 808–813. https://doi.org/10.1109/ICIEA.2014.6931273
Abdo, M. M., Vali, A. R., Toloei, A. R., & Arvan, M. R. (2014). Stabilization Loop of A Two Axes Gimbal System Using Self-Tuning PID Type Fuzzy Controller. ISA Transactions, 53(2), 591–602. https://doi.org/10.1016/j.isatra.2013.12.008
Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1). https://doi.org/10.1088/1757-899X/324/1/012049
Azmi, S., Away, Y., & Sara, I. D. (2016). Kajian Aspek Kecepatan dan Ketepatan pada Sun Tracker Dua Sumbu Berbasis Sensor Berbentuk Tetrahedron. Jurnal Rekayasa Elektro, 15(2), 1–9. https://doi.org/10.17529/jre.v15i2.13546