Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 4, November 2022
  4. Articles

Issue

Vol. 7, No. 4, November 2022

Issue Published : Nov 30, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

PID Controllers Performance On Dual Axis Tracking With Tetrahedron Based Sensor

https://doi.org/10.22219/kinetik.v7i4.1549
Melinda
Syiah Kuala University
Andri Novandri
Syiah Kuala University
Yuwaldi Away
Syiah Kuala University

Corresponding Author(s) : Melinda

melinda@unsyiah.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 4, November 2022
Article Published : Nov 30, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

This study compares control systems applied to a dual-axis tetrahedron-based sensor tracker. A tetrahedron-based sensor is a tracking sensor that can detect the coordinates of a light source. This study aims to determine a control system that can control sensors with high accuracy and precision and has a fast-tracking ability. Tests are carried out periodically by providing light at certain coordinates. After carrying out the testing and analysis process, it is concluded that the P controller is a better control system than the other controllers. This controller can control sensors with high accuracy and precision compared to PI, PD, and PID control systems. The P controller can also control the sensor to move towards the light coordinates with a travel time of 1.6 seconds on the X-axis and 3.1 seconds on the Y-axis, with a MAE value of 1.1 on the X-axis and 0.3 on the Y-axis. While the RSME value obtained is 1.33 on the X-axis and 0.55 on the Y-axis.

Keywords

Tetrahedron Tracker Sensor Dual Axis
Melinda, Novandri, A. ., & Away, Y. . (2022). PID Controllers Performance On Dual Axis Tracking With Tetrahedron Based Sensor. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(4). https://doi.org/10.22219/kinetik.v7i4.1549
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Guan, Y., Gang, C., & Ren, J. (2015). Cooperative solar tracking control of multiple dual-axis PV panels. 7th Chinese Control and Decision Conference (CCDC), 4058–4063. https://doi.org/10.1109/CCDC.2015.7162634
  2. Pivoňka, P. (2002). Comparative Analysis of Fuzzy PI/PD/PID Controller Based on Classical PID Controller Approach. IEEE International Conference on Fuzzy Systems, 1, 541–546. https://doi.org/10.1109/fuzz.2002.1005048
  3. Doss C.r., J., Kumaravel, M., & Jagadeesh Kumar, V. (2013). A Novel Measurement Technique for Performance Comparison of Sun Tracker Systems. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1156–1160. https://doi.org/10.1109/I2MTC.2013.6555595
  4. Away, Y., & Ikhsan, M. (2017). Dual-axis sun tracker sensor based on tetrahedron geometry. Automation in Construction, 73, 175–183. https://doi.org/10.1016/j.autcon.2016.10.009
  5. Away, Y., Rahman, A., Auliandra, T. R., & Firdaus, M. (2018). Performance Comparison between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor. International Conference on Electrical Engineering and Informatics, ICELTICs, 40–44. https://doi.org/10.1109/ICELTICS.2018.8548837
  6. Gaballa, M. S., Bahgat, M., & Abdel-Ghany, A. G. M. (2018). Self-Tuning of An FLC-PID Controller of A Dual-Axis Sun Tracker Photo-Voltaic Panel Based on Rise-Time-Observer Method. 19th International Middle-East Power Systems Conference (MEPCON), 722–727. https://doi.org/10.1109/MEPCON.2017.8301261
  7. Aung, C. A., Hote, Y. V., Pillai, G., & Jain, S. (2020). PID Controller Design for Solar Tracker via Modified Ziegler Nichols Rules. 2nd International Conference on Smart Power and Internet Energy Systems, 531–536. https://doi.org/10.1109/SPIES48661.2020.9243009
  8. Kumngern, M., & Torteanchai, U. (2014). FDCCII-Based P, PI, PD and PID Controllers. Fourth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), 415–418. https://doi.org/10.1109/DICTAP.2014.6821722
  9. Rizvi, A. A., Addoweesh, K., Abdelrehman, E.-L., & Al-Ansary, H. (2014). Sun Position Algorithm for Sun Tracking Applications. Annual Conference of the IEEE Industrial Electronics Society, 5595–5598. https://doi.org/10.1109/IECON.2014.7049356
  10. Pati, S., Patnaik, M., & Panda, A. (2014). Comparative Performance Analysis of Fuzzy PI, PD and PID Controllers Used in A Scalar Controlled Induction Motor Drive. International Conference on Circuits, Power and Computing Technologies (ICCPCT), 910–915. https://doi.org/10.1109/ICCPCT.2014.7054799
  11. Liu, C., Zhao, F. Y., Hu, P., Hou, S., & Li, C. (2010). P Controller with Partial Feed Forward Compensation and Decoupling Control for The Steam Generator Water Level. Nuclear Engineering and Design, 240(1), 181–190. https://doi.org/10.1016/j.nucengdes.2009.09.014
  12. Tan, N. (2009). Computation of Stabilizing PI-PD Controllers. International Journal of Control, Automation and Systems, 7(2), 175–184. https://doi.org/10.1007/s12555-009-0203-y
  13. Wang, Y. G., & Shao, H. H. (2000). Optimal Tuning for PI Controller. Automatica, 36(1), 147–152. https://doi.org/10.1016/S0005-1098(99)00130-2
  14. Tomei, P. (1991a). A Simple PD Controller for A Robot with Elastic Joints. IEEE Transactions on Automatic Control, 36(10), 1208–1213. https://doi.org/10.1109/9.90238
  15. Suruz Miah, M., & Gueaieb, W. (2014). Optimal Time-Varying P-Controller for A Class of Uncertain Nonlinear Systems. International Journal of Control, Automation and Systems, 12(4), 722–732. https://doi.org/10.1007/s12555-013-0234-2
  16. Sánchez, J., Visioli, A., & Dormido, S. (2011). A Two-Degree-of-Freedom PI Controller Based on Events. Journal of Process Control, 21(4), 639–651. https://doi.org/10.1016/j.jprocont.2010.12.001
  17. Ramirez, H. S. (1991). Nonliniear P-I Controller Design for Switchmode DC-to-DC Power Converters. IEEE Transactions on Circuit and System, 38(4), 410–417. https://doi.org/10.1109/31.75397
  18. Tomei, P. (1991b). Adaptive PD Controller for Robot Manipulators. IEEE Transactions on Robotics and Automation, 7(4), 565–570. https://doi.org/10.1109/70.86088
  19. Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2012). PID Controller Tuning Techniques: A Review. Journal of Control Engineering and Technology, 2(May), 168–176.
  20. Shah, P., & Agashe, S. (2016). Review of Fractional PID Controller. Mechatronics, 38, 29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005
  21. Dawson, D. M., Qu, Z., Lewis, F. L., & Dorsey, J. F. (1990). Robust Control for The Tracking of Robot Motion. International Journal of Control, 52(3), 581–595. https://doi.org/10.1080/00207179008953554
  22. Sabir, M. M., & Ali, T. (2016). Optimal PID Controller Design Through Swarm Intelligence Algorithms for Sun Tracking System. Applied Mathematics and Computation, 274, 690–699. https://doi.org/10.1016/j.amc.2015.11.036
  23. Jia, R., Nandikolla, V. K., Haggart, G., Volk, C., & Tazartes, D. (2017). System Performance of an Inertially Stabilized Gimbal Platform with Friction, Resonance, and Vibration Effects. Journal of Nonlinear Dynamics, 2017, 1–20. https://doi.org/10.1155/2017/6594861
  24. Fauziyah, M., Adhisuwignjo, S., Ifa, L. N., & Afandi, B. F. (2022). DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(1), 45–54. https://doi.org/10.22219/kinetik.v7i1.1352
  25. Wu, H., Su, W., & Liu, Z. (2014). PID Controllers: Design and Tuning Methods. 9th IEEE Conference on Industrial Electronics and Applications, 808–813. https://doi.org/10.1109/ICIEA.2014.6931273
  26. Abdo, M. M., Vali, A. R., Toloei, A. R., & Arvan, M. R. (2014). Stabilization Loop of A Two Axes Gimbal System Using Self-Tuning PID Type Fuzzy Controller. ISA Transactions, 53(2), 591–602. https://doi.org/10.1016/j.isatra.2013.12.008
  27. Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1). https://doi.org/10.1088/1757-899X/324/1/012049
  28. Azmi, S., Away, Y., & Sara, I. D. (2016). Kajian Aspek Kecepatan dan Ketepatan pada Sun Tracker Dua Sumbu Berbasis Sensor Berbentuk Tetrahedron. Jurnal Rekayasa Elektro, 15(2), 1–9. https://doi.org/10.17529/jre.v15i2.13546
Read More

References


Guan, Y., Gang, C., & Ren, J. (2015). Cooperative solar tracking control of multiple dual-axis PV panels. 7th Chinese Control and Decision Conference (CCDC), 4058–4063. https://doi.org/10.1109/CCDC.2015.7162634

Pivoňka, P. (2002). Comparative Analysis of Fuzzy PI/PD/PID Controller Based on Classical PID Controller Approach. IEEE International Conference on Fuzzy Systems, 1, 541–546. https://doi.org/10.1109/fuzz.2002.1005048

Doss C.r., J., Kumaravel, M., & Jagadeesh Kumar, V. (2013). A Novel Measurement Technique for Performance Comparison of Sun Tracker Systems. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1156–1160. https://doi.org/10.1109/I2MTC.2013.6555595

Away, Y., & Ikhsan, M. (2017). Dual-axis sun tracker sensor based on tetrahedron geometry. Automation in Construction, 73, 175–183. https://doi.org/10.1016/j.autcon.2016.10.009

Away, Y., Rahman, A., Auliandra, T. R., & Firdaus, M. (2018). Performance Comparison between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor. International Conference on Electrical Engineering and Informatics, ICELTICs, 40–44. https://doi.org/10.1109/ICELTICS.2018.8548837

Gaballa, M. S., Bahgat, M., & Abdel-Ghany, A. G. M. (2018). Self-Tuning of An FLC-PID Controller of A Dual-Axis Sun Tracker Photo-Voltaic Panel Based on Rise-Time-Observer Method. 19th International Middle-East Power Systems Conference (MEPCON), 722–727. https://doi.org/10.1109/MEPCON.2017.8301261

Aung, C. A., Hote, Y. V., Pillai, G., & Jain, S. (2020). PID Controller Design for Solar Tracker via Modified Ziegler Nichols Rules. 2nd International Conference on Smart Power and Internet Energy Systems, 531–536. https://doi.org/10.1109/SPIES48661.2020.9243009

Kumngern, M., & Torteanchai, U. (2014). FDCCII-Based P, PI, PD and PID Controllers. Fourth International Conference on Digital Information and Communication Technology and Its Applications (DICTAP), 415–418. https://doi.org/10.1109/DICTAP.2014.6821722

Rizvi, A. A., Addoweesh, K., Abdelrehman, E.-L., & Al-Ansary, H. (2014). Sun Position Algorithm for Sun Tracking Applications. Annual Conference of the IEEE Industrial Electronics Society, 5595–5598. https://doi.org/10.1109/IECON.2014.7049356

Pati, S., Patnaik, M., & Panda, A. (2014). Comparative Performance Analysis of Fuzzy PI, PD and PID Controllers Used in A Scalar Controlled Induction Motor Drive. International Conference on Circuits, Power and Computing Technologies (ICCPCT), 910–915. https://doi.org/10.1109/ICCPCT.2014.7054799

Liu, C., Zhao, F. Y., Hu, P., Hou, S., & Li, C. (2010). P Controller with Partial Feed Forward Compensation and Decoupling Control for The Steam Generator Water Level. Nuclear Engineering and Design, 240(1), 181–190. https://doi.org/10.1016/j.nucengdes.2009.09.014

Tan, N. (2009). Computation of Stabilizing PI-PD Controllers. International Journal of Control, Automation and Systems, 7(2), 175–184. https://doi.org/10.1007/s12555-009-0203-y

Wang, Y. G., & Shao, H. H. (2000). Optimal Tuning for PI Controller. Automatica, 36(1), 147–152. https://doi.org/10.1016/S0005-1098(99)00130-2

Tomei, P. (1991a). A Simple PD Controller for A Robot with Elastic Joints. IEEE Transactions on Automatic Control, 36(10), 1208–1213. https://doi.org/10.1109/9.90238

Suruz Miah, M., & Gueaieb, W. (2014). Optimal Time-Varying P-Controller for A Class of Uncertain Nonlinear Systems. International Journal of Control, Automation and Systems, 12(4), 722–732. https://doi.org/10.1007/s12555-013-0234-2

Sánchez, J., Visioli, A., & Dormido, S. (2011). A Two-Degree-of-Freedom PI Controller Based on Events. Journal of Process Control, 21(4), 639–651. https://doi.org/10.1016/j.jprocont.2010.12.001

Ramirez, H. S. (1991). Nonliniear P-I Controller Design for Switchmode DC-to-DC Power Converters. IEEE Transactions on Circuit and System, 38(4), 410–417. https://doi.org/10.1109/31.75397

Tomei, P. (1991b). Adaptive PD Controller for Robot Manipulators. IEEE Transactions on Robotics and Automation, 7(4), 565–570. https://doi.org/10.1109/70.86088

Bansal, H. O., Sharma, R., & Shreeraman, P. R. (2012). PID Controller Tuning Techniques: A Review. Journal of Control Engineering and Technology, 2(May), 168–176.

Shah, P., & Agashe, S. (2016). Review of Fractional PID Controller. Mechatronics, 38, 29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005

Dawson, D. M., Qu, Z., Lewis, F. L., & Dorsey, J. F. (1990). Robust Control for The Tracking of Robot Motion. International Journal of Control, 52(3), 581–595. https://doi.org/10.1080/00207179008953554

Sabir, M. M., & Ali, T. (2016). Optimal PID Controller Design Through Swarm Intelligence Algorithms for Sun Tracking System. Applied Mathematics and Computation, 274, 690–699. https://doi.org/10.1016/j.amc.2015.11.036

Jia, R., Nandikolla, V. K., Haggart, G., Volk, C., & Tazartes, D. (2017). System Performance of an Inertially Stabilized Gimbal Platform with Friction, Resonance, and Vibration Effects. Journal of Nonlinear Dynamics, 2017, 1–20. https://doi.org/10.1155/2017/6594861

Fauziyah, M., Adhisuwignjo, S., Ifa, L. N., & Afandi, B. F. (2022). DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(1), 45–54. https://doi.org/10.22219/kinetik.v7i1.1352

Wu, H., Su, W., & Liu, Z. (2014). PID Controllers: Design and Tuning Methods. 9th IEEE Conference on Industrial Electronics and Applications, 808–813. https://doi.org/10.1109/ICIEA.2014.6931273

Abdo, M. M., Vali, A. R., Toloei, A. R., & Arvan, M. R. (2014). Stabilization Loop of A Two Axes Gimbal System Using Self-Tuning PID Type Fuzzy Controller. ISA Transactions, 53(2), 591–602. https://doi.org/10.1016/j.isatra.2013.12.008

Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1). https://doi.org/10.1088/1757-899X/324/1/012049

Azmi, S., Away, Y., & Sara, I. D. (2016). Kajian Aspek Kecepatan dan Ketepatan pada Sun Tracker Dua Sumbu Berbasis Sensor Berbentuk Tetrahedron. Jurnal Rekayasa Elektro, 15(2), 1–9. https://doi.org/10.17529/jre.v15i2.13546

Author Biographies

Melinda, Syiah Kuala University

Department of Electrical Engineering and Computer

Andri Novandri, Syiah Kuala University

Magister of Electrical Engineering

Yuwaldi Away, Syiah Kuala University

Department of Electrical Engineering and Computer

Download this PDF file
PDF
Statistic
Read Counter : 11 Download : 8

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License