Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 4, November 2022
  4. Articles

Issue

Vol. 7, No. 4, November 2022

Issue Published : Nov 30, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Electronic Medical Record Data Analysis and Prediction of Stroke Disease Using Explainable Artificial Intelligence (XAI)

https://doi.org/10.22219/kinetik.v7i4.1535
Yuri Pamungkas
Institut Teknologi Sepuluh Nopember
Adhi Dharma Wibawa
Institut Teknologi Sepuluh Nopember
Meiliana Dwi Cahya
Universitas Negeri Malang

Corresponding Author(s) : Yuri Pamungkas

yuri@its.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 4, November 2022
Article Published : Nov 30, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The deficiency of oxygen in the brain will cause the cells to die, and the body parts controlled by the brain cells will become dysfunctional. Damage or rupture of blood vessels in the brain is better known as a stroke. Many factors affect stroke. These factors certainly need to be observed and alerted to prevent the high number of stroke sufferers. Therefore, this study aims to analyze the variables that influence stroke in medical records using statistical analysis (correlation) and stroke prediction using the XAI algorithm. Factors analyzed included gender, age, hypertension, heart disease, marital status, residence type, occupation, glucose level, BMI, and smoking. Based on the study results, we found that women have a higher risk of stroke than men, and even people who do not have hypertension and heart disease (hypertension and heart disease are not detected early) still have a high risk of stroke. Married people also have a higher risk of stroke than unmarried people. In addition, bad habits such as smoking, working with very intense thoughts and activities, and the type of living environment that is not conducive can also trigger a stroke. Increasing age, BMI, and glucose levels certainly affect a person's stroke risk. We have also succeeded in predicting stroke using the EMR data with high accuracy, sensitivity, and precision. Based on the performance matrix, PNN has the highest accuracy, sensitivity, and F-measure levels of 95%, 100%, and 97% compared to other algorithms, such as RF, NB, SVM, and KNN.

Keywords

Electronic Medical Record Statistical Analysis Stroke Prediction XAI Algorithm Probabilistic Neural Network
Pamungkas, Y., Wibawa , A. D., & Cahya, M. D. (2022). Electronic Medical Record Data Analysis and Prediction of Stroke Disease Using Explainable Artificial Intelligence (XAI). Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(4). https://doi.org/10.22219/kinetik.v7i4.1535
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. J. M. Shikany, M. M. Safford, O. Soroka, P. Newby, T. M. Brown, R. W. Durant, and S. E. Judd, "Abstract P520: Associations of dietary patterns and risk of sudden cardiac death in the reasons for geographic and racial differences in stroke study differ by history of coronary heart disease," Circulation, vol. 141, no. 1, p. AP520, Mar. 2020. https://doi.org/10.1161/circ.141.suppl_1.P520
  2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A report from the American Heart Association. Circulation 2019 Mar 05;139(10): e56-e528. https://doi.org/10.1161/CIR.0000000000000659
  3. Annual Report of the Indonesian Health Social Security Administering Agency (BPJS), 2019.
  4. Choi, Y.-A; Park, S.-J.; Jun, J.-A.; Pyo, C.-S.; Cho, K.-H.; Lee, H.-S.; Yu, J.-H. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors 2021, 21, 4269. https://doi.org/10.3390/s21134269
  5. Fang G, Huang Z and Wang Z (2022) Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 12:827522. https://doi.org/10.3389/fgene.2021.827522
  6. Mandeep Kaur, Sachin R. Sakhare, Kirti Wanjale, Farzana Akter, "Early Stroke Prediction Methods for Prevention of Strokes", Behavioural Neurology, vol. 2022, Article ID 7725597, 9 pages, 2022. https://doi.org/10.1155/2022/7725597
  7. Tocchetti, A.; Brambilla, M. The Role of Human Knowledge in Explainable AI. Data 2022, 7, 93. https://doi.org/10.3390/data7070093
  8. Ennab, M.; Mcheick, H. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare. Diagnostics 2022, 12, 1557. https://doi.org/10.3390/diagnostics12071557
  9. Madanu, R.; Abbod, M.F.; Hsiao, F.-J.; Chen, W.-T.; Shieh, J.-S. Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review. Technologies 2022, 10, 74. https://doi.org/10.3390/technologies10030074
  10. Sarp, S.; Kuzlu, M.; Wilson, E.; Cali, U.; Guler, O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics 2021, 10, 1406. https://doi.org/10.3390/electronics10121406
  11. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. https://dx.doi.org/10.3390/e23010018
  12. Obayya, M.; Nemri, N.; Nour, M.K.; Al Duhayyim, M.; Mohsen, H.; Rizwanullah, M.; Sarwar Zamani, A.; Motwakel, A. Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification. Appl. Sci. 2022, 12, 8749. https://doi.org/10.3390/app12178749
  13. Alanazi, E. M., Abdou, A., & Luo, J. (2021). Predicting Risk of Stroke from Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models. JMIR formative research, 5(12), e23440. https://doi.org/10.2196/23440
  14. Guo, Q.; Kawahata, I.; Cheng, A.; Jia, W.; Wang, H.; Fukunaga, K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int. J. Mol. Sci. 2022, 23, 9648. https://doi.org/10.3390/ijms23179648
  15. Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International journal of molecular sciences, 21(20), 7609. https://doi.org/10.3390/ijms21207609
  16. Profillidis, V. A., & Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/b978-0-12-811513-8.00005-4
  17. Sun, C., Hu, Y., & Shi, P. (2020). Probabilistic neural network-based seabed sediment recognition method for side-scan sonar imagery. Sedimentary Geology, 410, 105792. https://doi.org/10.1016/j.sedgeo.2020.105792
  18. Chaki, S., Routray, A., & Mohanty, W. K. (2022). A probabilistic neural network (PNN) based framework for lithology classification using seismic attributes. Journal of Applied Geophysics, 199. Published. https://doi.org/10.1016/j.jappgeo.2022.104578
  19. Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118. https://doi.org/10.1016/0893-6080(90)90049-q
  20. Ancona, F., Colla, A. M., Rovetta, S., & Zunino, R. (1997). Implementing Probabilistic Neural Networks. Neural Computing & Applications, 5(3), 152–159. https://doi.org/10.1007/bf01413860
  21. Rozos, E.; Koutsoyiannis, D.; Montanari, A. KNN vs. Bluecat-Machine Learning vs. Classical Statistics. Hydrology 2022, 9, 101. https://doi.org/10.3390/hydrology9060101
  22. Rungskunroch, P.; Shen, Z.-J.; Kaewunruen, S. Benchmarking Socio-Economic Impacts of High-Speed Rail Networks Using K-Nearest Neighbour and Pearson’s Correlation Coefficient Techniques through Computational Model-Based Analysis. Appl. Sci. 2022, 12, 1520. https://doi.org/10.3390/app12031520
  23. Miao, Y.; Hunter, A.; Georgilas, I. An Occupancy Mapping Method Based on K-Nearest Neighbours. Sensors 2022, 22, 139. https://doi.org/10.3390/s22010139
  24. Rath, S.K.; Sahu, M.; Das, S.P.; Bisoy, S.K.; Sain, M. A Comparative Analysis of SVM and ELM Classification on Software Reliability Prediction Model. Electronics 2022, 11, 2707. https://doi.org/10.3390/electronics11
  25. Li, L.; Ke, Y.; Zhang, T.; Zhao, J.; Huang, Z. A Human Defecation Prediction Method Based on Multi-Domain Features and Improved Support Vector Machine. Symmetry 2022, 14, 1763. https://doi.org/10.3390/sym14091763
  26. Barros, W.K.P.; Barbosa, M.T.; Dias, L.A.; Fernandes, M.A.C. Fully Parallel Proposal of Naive Bayes on FPGA. Electronics 2022, 11, 2565. https://doi.org/10.3390/electronics11162565
  27. Alsolai, H.; Roper, M. The Impact of Ensemble Techniques on Software Maintenance Change Prediction: An Empirical Study. Appl. Sci. 2022, 12, 5234. https://doi.org/10.3390/app12105234
  28. Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. https://doi.org/10.3390/su14106161
  29. Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests. Remote Sens. 2022, 14, 4372. https://doi.org/10.3390/rs14174372
  30. Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. https://doi.org/10.3390/rs14174370
  31. Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin, M. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques. Healthcare 2022, 10, 1293. https://doi.org/10.3390/healthcare10071293
  32. Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379: 2429–2437. https://doi.org/10.1056/NEJMoa1804492
  33. Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006; 37: 345–350. https://doi.org/10.1161/01.STR.0000199613.38911.b2
  34. Bassa, B.; Güntürkün, F.; Craemer, E.M.; Meyding-Lamadé, U.; Jacobi, C.; Bassa, A.; Becher, H. Diabetes, Hypertension, Atrial Fibrillation and Subsequent Stroke-Shift towards Young Ages in Brunei Darussalam. Int. J. Environ. Res. Public Health 2022, 19, 8455. https://doi.org/10.3390/ijerph19148455
  35. Sobierajski, T.; Surma, S.; Roma ´nczyk, M.; Łabuzek, K.; Filipiak, K.J.; Oparil, S. What Is or What Is Not a Risk Factor for Arterial Hypertension? Not Hamlet, but Medical Students Answer That Question. Int. J. Environ. Res. Public Health 2022, 19, 8206. https://doi.org/10.3390/ijerph19138206
  36. Diez-Iriepa, D.; Knez, D.; Gobec, S.; Iriepa, I.; de los Ríos, C.; Bravo, I.; López-Muñoz, F.; Marco-Contelles, J.; Hadjipavlou-Litina, D. Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants 2022, 11, 1735. https://doi.org/10.3390/antiox11091735
  37. Wang, X.; Thiel, L.; Graff, N.d. Mindfulness and Relaxation Techniques for Stroke Survivors with Aphasia: A Feasibility and Acceptability Study. Healthcare 2022, 10, 1409. https://doi.org/10.3390/healthcare10081409
  38. Ohlrogge, A.H.; Frost, L.; Schnabel, R.B. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022, 11, 2576. https://doi.org/10.3390/cells11162576
  39. Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. https://doi.org/10.3390/ijms23158512
  40. Wicht, C.A.; Chavan, C.F.; Annoni, J.-M.; Balmer, P.; Aellen, J.; Humm, A.M.; Crettaz von Roten, F.; Spierer, L.; Medlin, F. Predictors for Returning to Paid Work after Transient Ischemic Attack and Minor Ischemic Stroke. J. Pers. Med. 2022, 12, 1109. https://doi.org/10.3390/jpm12071109
  41. Tadi, P., & Lui, F. (2022). Acute Stroke. In StatPearls. StatPearls Publishing.
  42. Hui C, Tadi P, Patti L. Ischemic Stroke. [Updated 2022 Jun 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499997/
Read More

References


J. M. Shikany, M. M. Safford, O. Soroka, P. Newby, T. M. Brown, R. W. Durant, and S. E. Judd, "Abstract P520: Associations of dietary patterns and risk of sudden cardiac death in the reasons for geographic and racial differences in stroke study differ by history of coronary heart disease," Circulation, vol. 141, no. 1, p. AP520, Mar. 2020. https://doi.org/10.1161/circ.141.suppl_1.P520

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A report from the American Heart Association. Circulation 2019 Mar 05;139(10): e56-e528. https://doi.org/10.1161/CIR.0000000000000659

Annual Report of the Indonesian Health Social Security Administering Agency (BPJS), 2019.

Choi, Y.-A; Park, S.-J.; Jun, J.-A.; Pyo, C.-S.; Cho, K.-H.; Lee, H.-S.; Yu, J.-H. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors 2021, 21, 4269. https://doi.org/10.3390/s21134269

Fang G, Huang Z and Wang Z (2022) Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 12:827522. https://doi.org/10.3389/fgene.2021.827522

Mandeep Kaur, Sachin R. Sakhare, Kirti Wanjale, Farzana Akter, "Early Stroke Prediction Methods for Prevention of Strokes", Behavioural Neurology, vol. 2022, Article ID 7725597, 9 pages, 2022. https://doi.org/10.1155/2022/7725597

Tocchetti, A.; Brambilla, M. The Role of Human Knowledge in Explainable AI. Data 2022, 7, 93. https://doi.org/10.3390/data7070093

Ennab, M.; Mcheick, H. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare. Diagnostics 2022, 12, 1557. https://doi.org/10.3390/diagnostics12071557

Madanu, R.; Abbod, M.F.; Hsiao, F.-J.; Chen, W.-T.; Shieh, J.-S. Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review. Technologies 2022, 10, 74. https://doi.org/10.3390/technologies10030074

Sarp, S.; Kuzlu, M.; Wilson, E.; Cali, U.; Guler, O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics 2021, 10, 1406. https://doi.org/10.3390/electronics10121406

Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. https://dx.doi.org/10.3390/e23010018

Obayya, M.; Nemri, N.; Nour, M.K.; Al Duhayyim, M.; Mohsen, H.; Rizwanullah, M.; Sarwar Zamani, A.; Motwakel, A. Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification. Appl. Sci. 2022, 12, 8749. https://doi.org/10.3390/app12178749

Alanazi, E. M., Abdou, A., & Luo, J. (2021). Predicting Risk of Stroke from Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models. JMIR formative research, 5(12), e23440. https://doi.org/10.2196/23440

Guo, Q.; Kawahata, I.; Cheng, A.; Jia, W.; Wang, H.; Fukunaga, K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int. J. Mol. Sci. 2022, 23, 9648. https://doi.org/10.3390/ijms23179648

Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International journal of molecular sciences, 21(20), 7609. https://doi.org/10.3390/ijms21207609

Profillidis, V. A., & Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/b978-0-12-811513-8.00005-4

Sun, C., Hu, Y., & Shi, P. (2020). Probabilistic neural network-based seabed sediment recognition method for side-scan sonar imagery. Sedimentary Geology, 410, 105792. https://doi.org/10.1016/j.sedgeo.2020.105792

Chaki, S., Routray, A., & Mohanty, W. K. (2022). A probabilistic neural network (PNN) based framework for lithology classification using seismic attributes. Journal of Applied Geophysics, 199. Published. https://doi.org/10.1016/j.jappgeo.2022.104578

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118. https://doi.org/10.1016/0893-6080(90)90049-q

Ancona, F., Colla, A. M., Rovetta, S., & Zunino, R. (1997). Implementing Probabilistic Neural Networks. Neural Computing & Applications, 5(3), 152–159. https://doi.org/10.1007/bf01413860

Rozos, E.; Koutsoyiannis, D.; Montanari, A. KNN vs. Bluecat-Machine Learning vs. Classical Statistics. Hydrology 2022, 9, 101. https://doi.org/10.3390/hydrology9060101

Rungskunroch, P.; Shen, Z.-J.; Kaewunruen, S. Benchmarking Socio-Economic Impacts of High-Speed Rail Networks Using K-Nearest Neighbour and Pearson’s Correlation Coefficient Techniques through Computational Model-Based Analysis. Appl. Sci. 2022, 12, 1520. https://doi.org/10.3390/app12031520

Miao, Y.; Hunter, A.; Georgilas, I. An Occupancy Mapping Method Based on K-Nearest Neighbours. Sensors 2022, 22, 139. https://doi.org/10.3390/s22010139

Rath, S.K.; Sahu, M.; Das, S.P.; Bisoy, S.K.; Sain, M. A Comparative Analysis of SVM and ELM Classification on Software Reliability Prediction Model. Electronics 2022, 11, 2707. https://doi.org/10.3390/electronics11

Li, L.; Ke, Y.; Zhang, T.; Zhao, J.; Huang, Z. A Human Defecation Prediction Method Based on Multi-Domain Features and Improved Support Vector Machine. Symmetry 2022, 14, 1763. https://doi.org/10.3390/sym14091763

Barros, W.K.P.; Barbosa, M.T.; Dias, L.A.; Fernandes, M.A.C. Fully Parallel Proposal of Naive Bayes on FPGA. Electronics 2022, 11, 2565. https://doi.org/10.3390/electronics11162565

Alsolai, H.; Roper, M. The Impact of Ensemble Techniques on Software Maintenance Change Prediction: An Empirical Study. Appl. Sci. 2022, 12, 5234. https://doi.org/10.3390/app12105234

Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. https://doi.org/10.3390/su14106161

Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests. Remote Sens. 2022, 14, 4372. https://doi.org/10.3390/rs14174372

Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. https://doi.org/10.3390/rs14174370

Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin, M. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques. Healthcare 2022, 10, 1293. https://doi.org/10.3390/healthcare10071293

Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379: 2429–2437. https://doi.org/10.1056/NEJMoa1804492

Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006; 37: 345–350. https://doi.org/10.1161/01.STR.0000199613.38911.b2

Bassa, B.; Güntürkün, F.; Craemer, E.M.; Meyding-Lamadé, U.; Jacobi, C.; Bassa, A.; Becher, H. Diabetes, Hypertension, Atrial Fibrillation and Subsequent Stroke-Shift towards Young Ages in Brunei Darussalam. Int. J. Environ. Res. Public Health 2022, 19, 8455. https://doi.org/10.3390/ijerph19148455

Sobierajski, T.; Surma, S.; Roma ´nczyk, M.; Łabuzek, K.; Filipiak, K.J.; Oparil, S. What Is or What Is Not a Risk Factor for Arterial Hypertension? Not Hamlet, but Medical Students Answer That Question. Int. J. Environ. Res. Public Health 2022, 19, 8206. https://doi.org/10.3390/ijerph19138206

Diez-Iriepa, D.; Knez, D.; Gobec, S.; Iriepa, I.; de los Ríos, C.; Bravo, I.; López-Muñoz, F.; Marco-Contelles, J.; Hadjipavlou-Litina, D. Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants 2022, 11, 1735. https://doi.org/10.3390/antiox11091735

Wang, X.; Thiel, L.; Graff, N.d. Mindfulness and Relaxation Techniques for Stroke Survivors with Aphasia: A Feasibility and Acceptability Study. Healthcare 2022, 10, 1409. https://doi.org/10.3390/healthcare10081409

Ohlrogge, A.H.; Frost, L.; Schnabel, R.B. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022, 11, 2576. https://doi.org/10.3390/cells11162576

Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. https://doi.org/10.3390/ijms23158512

Wicht, C.A.; Chavan, C.F.; Annoni, J.-M.; Balmer, P.; Aellen, J.; Humm, A.M.; Crettaz von Roten, F.; Spierer, L.; Medlin, F. Predictors for Returning to Paid Work after Transient Ischemic Attack and Minor Ischemic Stroke. J. Pers. Med. 2022, 12, 1109. https://doi.org/10.3390/jpm12071109

Tadi, P., & Lui, F. (2022). Acute Stroke. In StatPearls. StatPearls Publishing.

Hui C, Tadi P, Patti L. Ischemic Stroke. [Updated 2022 Jun 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499997/

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 19 Download : 16

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License