This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Electronic Medical Record Data Analysis and Prediction of Stroke Disease Using Explainable Artificial Intelligence (XAI)
Corresponding Author(s) : Yuri Pamungkas
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 7, No. 4, November 2022
Abstract
The deficiency of oxygen in the brain will cause the cells to die, and the body parts controlled by the brain cells will become dysfunctional. Damage or rupture of blood vessels in the brain is better known as a stroke. Many factors affect stroke. These factors certainly need to be observed and alerted to prevent the high number of stroke sufferers. Therefore, this study aims to analyze the variables that influence stroke in medical records using statistical analysis (correlation) and stroke prediction using the XAI algorithm. Factors analyzed included gender, age, hypertension, heart disease, marital status, residence type, occupation, glucose level, BMI, and smoking. Based on the study results, we found that women have a higher risk of stroke than men, and even people who do not have hypertension and heart disease (hypertension and heart disease are not detected early) still have a high risk of stroke. Married people also have a higher risk of stroke than unmarried people. In addition, bad habits such as smoking, working with very intense thoughts and activities, and the type of living environment that is not conducive can also trigger a stroke. Increasing age, BMI, and glucose levels certainly affect a person's stroke risk. We have also succeeded in predicting stroke using the EMR data with high accuracy, sensitivity, and precision. Based on the performance matrix, PNN has the highest accuracy, sensitivity, and F-measure levels of 95%, 100%, and 97% compared to other algorithms, such as RF, NB, SVM, and KNN.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. M. Shikany, M. M. Safford, O. Soroka, P. Newby, T. M. Brown, R. W. Durant, and S. E. Judd, "Abstract P520: Associations of dietary patterns and risk of sudden cardiac death in the reasons for geographic and racial differences in stroke study differ by history of coronary heart disease," Circulation, vol. 141, no. 1, p. AP520, Mar. 2020. https://doi.org/10.1161/circ.141.suppl_1.P520
- Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A report from the American Heart Association. Circulation 2019 Mar 05;139(10): e56-e528. https://doi.org/10.1161/CIR.0000000000000659
- Annual Report of the Indonesian Health Social Security Administering Agency (BPJS), 2019.
- Choi, Y.-A; Park, S.-J.; Jun, J.-A.; Pyo, C.-S.; Cho, K.-H.; Lee, H.-S.; Yu, J.-H. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors 2021, 21, 4269. https://doi.org/10.3390/s21134269
- Fang G, Huang Z and Wang Z (2022) Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 12:827522. https://doi.org/10.3389/fgene.2021.827522
- Mandeep Kaur, Sachin R. Sakhare, Kirti Wanjale, Farzana Akter, "Early Stroke Prediction Methods for Prevention of Strokes", Behavioural Neurology, vol. 2022, Article ID 7725597, 9 pages, 2022. https://doi.org/10.1155/2022/7725597
- Tocchetti, A.; Brambilla, M. The Role of Human Knowledge in Explainable AI. Data 2022, 7, 93. https://doi.org/10.3390/data7070093
- Ennab, M.; Mcheick, H. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare. Diagnostics 2022, 12, 1557. https://doi.org/10.3390/diagnostics12071557
- Madanu, R.; Abbod, M.F.; Hsiao, F.-J.; Chen, W.-T.; Shieh, J.-S. Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review. Technologies 2022, 10, 74. https://doi.org/10.3390/technologies10030074
- Sarp, S.; Kuzlu, M.; Wilson, E.; Cali, U.; Guler, O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics 2021, 10, 1406. https://doi.org/10.3390/electronics10121406
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. https://dx.doi.org/10.3390/e23010018
- Obayya, M.; Nemri, N.; Nour, M.K.; Al Duhayyim, M.; Mohsen, H.; Rizwanullah, M.; Sarwar Zamani, A.; Motwakel, A. Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification. Appl. Sci. 2022, 12, 8749. https://doi.org/10.3390/app12178749
- Alanazi, E. M., Abdou, A., & Luo, J. (2021). Predicting Risk of Stroke from Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models. JMIR formative research, 5(12), e23440. https://doi.org/10.2196/23440
- Guo, Q.; Kawahata, I.; Cheng, A.; Jia, W.; Wang, H.; Fukunaga, K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int. J. Mol. Sci. 2022, 23, 9648. https://doi.org/10.3390/ijms23179648
- Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International journal of molecular sciences, 21(20), 7609. https://doi.org/10.3390/ijms21207609
- Profillidis, V. A., & Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/b978-0-12-811513-8.00005-4
- Sun, C., Hu, Y., & Shi, P. (2020). Probabilistic neural network-based seabed sediment recognition method for side-scan sonar imagery. Sedimentary Geology, 410, 105792. https://doi.org/10.1016/j.sedgeo.2020.105792
- Chaki, S., Routray, A., & Mohanty, W. K. (2022). A probabilistic neural network (PNN) based framework for lithology classification using seismic attributes. Journal of Applied Geophysics, 199. Published. https://doi.org/10.1016/j.jappgeo.2022.104578
- Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118. https://doi.org/10.1016/0893-6080(90)90049-q
- Ancona, F., Colla, A. M., Rovetta, S., & Zunino, R. (1997). Implementing Probabilistic Neural Networks. Neural Computing & Applications, 5(3), 152–159. https://doi.org/10.1007/bf01413860
- Rozos, E.; Koutsoyiannis, D.; Montanari, A. KNN vs. Bluecat-Machine Learning vs. Classical Statistics. Hydrology 2022, 9, 101. https://doi.org/10.3390/hydrology9060101
- Rungskunroch, P.; Shen, Z.-J.; Kaewunruen, S. Benchmarking Socio-Economic Impacts of High-Speed Rail Networks Using K-Nearest Neighbour and Pearson’s Correlation Coefficient Techniques through Computational Model-Based Analysis. Appl. Sci. 2022, 12, 1520. https://doi.org/10.3390/app12031520
- Miao, Y.; Hunter, A.; Georgilas, I. An Occupancy Mapping Method Based on K-Nearest Neighbours. Sensors 2022, 22, 139. https://doi.org/10.3390/s22010139
- Rath, S.K.; Sahu, M.; Das, S.P.; Bisoy, S.K.; Sain, M. A Comparative Analysis of SVM and ELM Classification on Software Reliability Prediction Model. Electronics 2022, 11, 2707. https://doi.org/10.3390/electronics11
- Li, L.; Ke, Y.; Zhang, T.; Zhao, J.; Huang, Z. A Human Defecation Prediction Method Based on Multi-Domain Features and Improved Support Vector Machine. Symmetry 2022, 14, 1763. https://doi.org/10.3390/sym14091763
- Barros, W.K.P.; Barbosa, M.T.; Dias, L.A.; Fernandes, M.A.C. Fully Parallel Proposal of Naive Bayes on FPGA. Electronics 2022, 11, 2565. https://doi.org/10.3390/electronics11162565
- Alsolai, H.; Roper, M. The Impact of Ensemble Techniques on Software Maintenance Change Prediction: An Empirical Study. Appl. Sci. 2022, 12, 5234. https://doi.org/10.3390/app12105234
- Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. https://doi.org/10.3390/su14106161
- Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests. Remote Sens. 2022, 14, 4372. https://doi.org/10.3390/rs14174372
- Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. https://doi.org/10.3390/rs14174370
- Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin, M. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques. Healthcare 2022, 10, 1293. https://doi.org/10.3390/healthcare10071293
- Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379: 2429–2437. https://doi.org/10.1056/NEJMoa1804492
- Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006; 37: 345–350. https://doi.org/10.1161/01.STR.0000199613.38911.b2
- Bassa, B.; Güntürkün, F.; Craemer, E.M.; Meyding-Lamadé, U.; Jacobi, C.; Bassa, A.; Becher, H. Diabetes, Hypertension, Atrial Fibrillation and Subsequent Stroke-Shift towards Young Ages in Brunei Darussalam. Int. J. Environ. Res. Public Health 2022, 19, 8455. https://doi.org/10.3390/ijerph19148455
- Sobierajski, T.; Surma, S.; Roma ´nczyk, M.; Łabuzek, K.; Filipiak, K.J.; Oparil, S. What Is or What Is Not a Risk Factor for Arterial Hypertension? Not Hamlet, but Medical Students Answer That Question. Int. J. Environ. Res. Public Health 2022, 19, 8206. https://doi.org/10.3390/ijerph19138206
- Diez-Iriepa, D.; Knez, D.; Gobec, S.; Iriepa, I.; de los Ríos, C.; Bravo, I.; López-Muñoz, F.; Marco-Contelles, J.; Hadjipavlou-Litina, D. Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants 2022, 11, 1735. https://doi.org/10.3390/antiox11091735
- Wang, X.; Thiel, L.; Graff, N.d. Mindfulness and Relaxation Techniques for Stroke Survivors with Aphasia: A Feasibility and Acceptability Study. Healthcare 2022, 10, 1409. https://doi.org/10.3390/healthcare10081409
- Ohlrogge, A.H.; Frost, L.; Schnabel, R.B. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022, 11, 2576. https://doi.org/10.3390/cells11162576
- Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. https://doi.org/10.3390/ijms23158512
- Wicht, C.A.; Chavan, C.F.; Annoni, J.-M.; Balmer, P.; Aellen, J.; Humm, A.M.; Crettaz von Roten, F.; Spierer, L.; Medlin, F. Predictors for Returning to Paid Work after Transient Ischemic Attack and Minor Ischemic Stroke. J. Pers. Med. 2022, 12, 1109. https://doi.org/10.3390/jpm12071109
- Tadi, P., & Lui, F. (2022). Acute Stroke. In StatPearls. StatPearls Publishing.
- Hui C, Tadi P, Patti L. Ischemic Stroke. [Updated 2022 Jun 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499997/
References
J. M. Shikany, M. M. Safford, O. Soroka, P. Newby, T. M. Brown, R. W. Durant, and S. E. Judd, "Abstract P520: Associations of dietary patterns and risk of sudden cardiac death in the reasons for geographic and racial differences in stroke study differ by history of coronary heart disease," Circulation, vol. 141, no. 1, p. AP520, Mar. 2020. https://doi.org/10.1161/circ.141.suppl_1.P520
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A report from the American Heart Association. Circulation 2019 Mar 05;139(10): e56-e528. https://doi.org/10.1161/CIR.0000000000000659
Annual Report of the Indonesian Health Social Security Administering Agency (BPJS), 2019.
Choi, Y.-A; Park, S.-J.; Jun, J.-A.; Pyo, C.-S.; Cho, K.-H.; Lee, H.-S.; Yu, J.-H. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors 2021, 21, 4269. https://doi.org/10.3390/s21134269
Fang G, Huang Z and Wang Z (2022) Predicting Ischemic Stroke Outcome Using Deep Learning Approaches. Front. Genet. 12:827522. https://doi.org/10.3389/fgene.2021.827522
Mandeep Kaur, Sachin R. Sakhare, Kirti Wanjale, Farzana Akter, "Early Stroke Prediction Methods for Prevention of Strokes", Behavioural Neurology, vol. 2022, Article ID 7725597, 9 pages, 2022. https://doi.org/10.1155/2022/7725597
Tocchetti, A.; Brambilla, M. The Role of Human Knowledge in Explainable AI. Data 2022, 7, 93. https://doi.org/10.3390/data7070093
Ennab, M.; Mcheick, H. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare. Diagnostics 2022, 12, 1557. https://doi.org/10.3390/diagnostics12071557
Madanu, R.; Abbod, M.F.; Hsiao, F.-J.; Chen, W.-T.; Shieh, J.-S. Explainable AI (XAI) Applied in Machine Learning for Pain Modeling: A Review. Technologies 2022, 10, 74. https://doi.org/10.3390/technologies10030074
Sarp, S.; Kuzlu, M.; Wilson, E.; Cali, U.; Guler, O. The Enlightening Role of Explainable Artificial Intelligence in Chronic Wound Classification. Electronics 2021, 10, 1406. https://doi.org/10.3390/electronics10121406
Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. https://dx.doi.org/10.3390/e23010018
Obayya, M.; Nemri, N.; Nour, M.K.; Al Duhayyim, M.; Mohsen, H.; Rizwanullah, M.; Sarwar Zamani, A.; Motwakel, A. Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification. Appl. Sci. 2022, 12, 8749. https://doi.org/10.3390/app12178749
Alanazi, E. M., Abdou, A., & Luo, J. (2021). Predicting Risk of Stroke from Lab Tests Using Machine Learning Algorithms: Development and Evaluation of Prediction Models. JMIR formative research, 5(12), e23440. https://doi.org/10.2196/23440
Guo, Q.; Kawahata, I.; Cheng, A.; Jia, W.; Wang, H.; Fukunaga, K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int. J. Mol. Sci. 2022, 23, 9648. https://doi.org/10.3390/ijms23179648
Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International journal of molecular sciences, 21(20), 7609. https://doi.org/10.3390/ijms21207609
Profillidis, V. A., & Botzoris, G. N. (2019). Statistical Methods for Transport Demand Modeling. Modeling of Transport Demand, 163–224. https://doi.org/10.1016/b978-0-12-811513-8.00005-4
Sun, C., Hu, Y., & Shi, P. (2020). Probabilistic neural network-based seabed sediment recognition method for side-scan sonar imagery. Sedimentary Geology, 410, 105792. https://doi.org/10.1016/j.sedgeo.2020.105792
Chaki, S., Routray, A., & Mohanty, W. K. (2022). A probabilistic neural network (PNN) based framework for lithology classification using seismic attributes. Journal of Applied Geophysics, 199. Published. https://doi.org/10.1016/j.jappgeo.2022.104578
Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109–118. https://doi.org/10.1016/0893-6080(90)90049-q
Ancona, F., Colla, A. M., Rovetta, S., & Zunino, R. (1997). Implementing Probabilistic Neural Networks. Neural Computing & Applications, 5(3), 152–159. https://doi.org/10.1007/bf01413860
Rozos, E.; Koutsoyiannis, D.; Montanari, A. KNN vs. Bluecat-Machine Learning vs. Classical Statistics. Hydrology 2022, 9, 101. https://doi.org/10.3390/hydrology9060101
Rungskunroch, P.; Shen, Z.-J.; Kaewunruen, S. Benchmarking Socio-Economic Impacts of High-Speed Rail Networks Using K-Nearest Neighbour and Pearson’s Correlation Coefficient Techniques through Computational Model-Based Analysis. Appl. Sci. 2022, 12, 1520. https://doi.org/10.3390/app12031520
Miao, Y.; Hunter, A.; Georgilas, I. An Occupancy Mapping Method Based on K-Nearest Neighbours. Sensors 2022, 22, 139. https://doi.org/10.3390/s22010139
Rath, S.K.; Sahu, M.; Das, S.P.; Bisoy, S.K.; Sain, M. A Comparative Analysis of SVM and ELM Classification on Software Reliability Prediction Model. Electronics 2022, 11, 2707. https://doi.org/10.3390/electronics11
Li, L.; Ke, Y.; Zhang, T.; Zhao, J.; Huang, Z. A Human Defecation Prediction Method Based on Multi-Domain Features and Improved Support Vector Machine. Symmetry 2022, 14, 1763. https://doi.org/10.3390/sym14091763
Barros, W.K.P.; Barbosa, M.T.; Dias, L.A.; Fernandes, M.A.C. Fully Parallel Proposal of Naive Bayes on FPGA. Electronics 2022, 11, 2565. https://doi.org/10.3390/electronics11162565
Alsolai, H.; Roper, M. The Impact of Ensemble Techniques on Software Maintenance Change Prediction: An Empirical Study. Appl. Sci. 2022, 12, 5234. https://doi.org/10.3390/app12105234
Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. https://doi.org/10.3390/su14106161
Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of Soil Organic Carbon Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random Forests. Remote Sens. 2022, 14, 4372. https://doi.org/10.3390/rs14174372
Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. https://doi.org/10.3390/rs14174370
Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin, M. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques. Healthcare 2022, 10, 1293. https://doi.org/10.3390/healthcare10071293
Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, Parmar PG, Abajobir AA, Abate KH, Abd-Allah F, Abejie AN, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379: 2429–2437. https://doi.org/10.1056/NEJMoa1804492
Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006; 37: 345–350. https://doi.org/10.1161/01.STR.0000199613.38911.b2
Bassa, B.; Güntürkün, F.; Craemer, E.M.; Meyding-Lamadé, U.; Jacobi, C.; Bassa, A.; Becher, H. Diabetes, Hypertension, Atrial Fibrillation and Subsequent Stroke-Shift towards Young Ages in Brunei Darussalam. Int. J. Environ. Res. Public Health 2022, 19, 8455. https://doi.org/10.3390/ijerph19148455
Sobierajski, T.; Surma, S.; Roma ´nczyk, M.; Łabuzek, K.; Filipiak, K.J.; Oparil, S. What Is or What Is Not a Risk Factor for Arterial Hypertension? Not Hamlet, but Medical Students Answer That Question. Int. J. Environ. Res. Public Health 2022, 19, 8206. https://doi.org/10.3390/ijerph19138206
Diez-Iriepa, D.; Knez, D.; Gobec, S.; Iriepa, I.; de los Ríos, C.; Bravo, I.; López-Muñoz, F.; Marco-Contelles, J.; Hadjipavlou-Litina, D. Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants 2022, 11, 1735. https://doi.org/10.3390/antiox11091735
Wang, X.; Thiel, L.; Graff, N.d. Mindfulness and Relaxation Techniques for Stroke Survivors with Aphasia: A Feasibility and Acceptability Study. Healthcare 2022, 10, 1409. https://doi.org/10.3390/healthcare10081409
Ohlrogge, A.H.; Frost, L.; Schnabel, R.B. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022, 11, 2576. https://doi.org/10.3390/cells11162576
Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. https://doi.org/10.3390/ijms23158512
Wicht, C.A.; Chavan, C.F.; Annoni, J.-M.; Balmer, P.; Aellen, J.; Humm, A.M.; Crettaz von Roten, F.; Spierer, L.; Medlin, F. Predictors for Returning to Paid Work after Transient Ischemic Attack and Minor Ischemic Stroke. J. Pers. Med. 2022, 12, 1109. https://doi.org/10.3390/jpm12071109
Tadi, P., & Lui, F. (2022). Acute Stroke. In StatPearls. StatPearls Publishing.
Hui C, Tadi P, Patti L. Ischemic Stroke. [Updated 2022 Jun 2]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499997/