Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 3, August 2022
  4. Articles

Issue

Vol. 7, No. 3, August 2022

Issue Published : Aug 31, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering

https://doi.org/10.22219/kinetik.v7i3.1486
Amir Saleh Nasution
Universitas Prima Indonesia
Alvin Alvin
Universitas Prima Indonesia
Ana Tince Siregar
Universitas Prima Indonesia
Monica Sari Sinaga
Universitas Prima Indonesia

Corresponding Author(s) : Amir Saleh Nasution

amirsalehnst1990@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 3, August 2022
Article Published : Sep 29, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Image segmentation is an important process in identifying tomato diseases. The technique that is often used in this segmentation is k-means clustering. One of the main problems in this technique is the case of local minima, where the cluster that is formed is not suitable due to the incorrect selection of the initial centroid. In image data, this case will have an impact on poor segmentation results because it can erase parts that are actually important to be lost or there is still background in the recognition process, which has an impact on decreasing accuracy results. In this research, a method for image segmentation will be proposed using the k-means clustering algorithm, which has been added with the cosine similarity method as the proposed contribution. The use of the cosine method will determine the initial centroid by calculating the level of similarity of each image feature based on color and dividing them into several categories (low, medium, and high values). Based on the results obtained, the proposed algorithm is able to segment and distinguish between leaf and background images with good results, with the kNN reaching a value of 94.90% for accuracy, 99.50% for sensitivity, and 93.75% for specificity. The results obtained using the kNN method with k-means segmentation obtained a value of 92.46% for accuracy, 96.30% for sensitivity, and 91.50% for specificity. The results obtained using the kNN method without segmentation obtained a value of 90.22% for accuracy, 93.30% for sensitivity, and 89.45% for specificity.

Keywords

Image segmentation K-means clustering Cosine similarity Identifying tomato diseases KNN
Nasution, A. S., Alvin, A., Siregar, A. T., & Sinaga, M. S. (2022). KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(3), 299-308. https://doi.org/10.22219/kinetik.v7i3.1486
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. A. Hidayatuloh, M. Nursalman, and E. Nugraha, “Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model,” 2018 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2018 - Proc., pp. 199–204, 2018. https://doi.org/10.1109/ICITSI.2018.8696087
  2. C. Usha Kumari, S. Jeevan Prasad, and G. Mounika, “Leaf disease detection: Feature extraction with k-means clustering and classification with ANN,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, pp. 1095–1098, 2019. https://doi.org/10.1109/ICCMC.2019.8819750
  3. H. Kibriya, R. Rafique, W. Ahmad, and S. M. Adnan, “Tomato Leaf Disease Detection Using Convolution Neural Network,” Proc. 18th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2021, pp. 346–351, 2021. https://doi.org/10.1109/IBCAST51254.2021.9393311
  4. H. D. Gadade and D. K. Kirange, “Tomato leaf disease diagnosis and severity measurement,” Proc. World Conf. Smart Trends Syst. Secur. Sustain. WS4 2020, pp. 318–323, 2020. https://doi.org/10.1109/WorldS450073.2020.9210294
  5. C. Zhou, S. Zhou, J. Xing, and J. Song, “Tomato Leaf Disease Identification by Restructured Deep Residual Dense Network,” IEEE Access, vol. 9, pp. 28822–28831, 2021. https://doi.org/10.1109/ACCESS.2021.3058947
  6. H. Sabrol and K. Satish, “Tomato plant disease classification in digital images using classification tree,” Int. Conf. Commun. Signal Process. ICCSP 2016, pp. 1242–1246, 2016. https://doi.org/10.1109/ICCSP.2016.7754351
  7. M. M. Gunarathna and R. M. K. T. Rathnayaka, “Experimental determination of CNN hyper-parameters for tomato disease detection using leaf images,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 464–469, 2020. https://doi.org/10.1109/ICAC51239.2020.9357284
  8. Y. ALTUNTAŞ and F. KOCAMAZ, “Deep Feature Extraction for Detection of Tomato Plant Diseases and Pests based on Leaf Images,” Celal Bayar Üniversitesi Fen Bilim. Derg., vol. 17, no. 2, pp. 145–152, 2021. https://doi.org/10.18466/cbayarfbe.812375
  9. A. Yousuf and U. Khan, “Ensemble Classifier for Plant Disease Detection,” Int. J. Comput. Sci. Mob. Comput., vol. 10, no. 1, pp. 14–22, 2021. https://doi.org/10.47760/ijcsmc.2021.v10i01.003
  10. J. Shijie, J. Peiyi, H. Siping, and Sl. Haibo, “Automatic detection of tomato diseases and pests based on leaf images,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-Janua, pp. 3507–3510, 2017. https://doi.org/10.1109/CAC.2017.8243388
  11. M. Sardogan, A. Tuncer, and Y. Ozen, “Plant Leaf Disease Detection and Classification Based on CNN with LVQ Algorithm,” UBMK 2018 - 3rd Int. Conf. Comput. Sci. Eng., pp. 382–385, 2018. https://doi.org/10.1109/UBMK.2018.8566635
  12. L. Liu, Y. Wang, and W. Chi, “Image Recognition Technology Based on Machine Learning,” IEEE Access, pp. 1–1, 2020. https://doi.org/10.1109/ACCESS.2020.3021590
  13. H. Yao, Q. Duan, D. Li, and J. Wang, “An improved K-means clustering algorithm for fish image segmentation,” Math. Comput. Model., vol. 58, no. 3–4, pp. 790–798, 2013. https://doi.org/10.1016/j.mcm.2012.12.025
  14. E. Aghajari and G. D. Chandrashekhar, “Self-Organizing Map based Extended Fuzzy C-Means (SEEFC) algorithm for image segmentation,” Appl. Soft Comput. J., vol. 54, pp. 347–363, 2017. https://doi.org/10.1016/j.asoc.2017.01.003
  15. C. Shanmugam and E. Chandira Sekaran, “IRT image segmentation and enhancement using FCM-MALO approach,” Infrared Phys. Technol., vol. 97, no. December, pp. 187–196, 2019. https://doi.org/10.1016/j.infrared.2018.12.032
  16. N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm,” Procedia Comput. Sci., vol. 54, pp. 764–771, 2015. https://doi.org/10.1016/j.procs.2015.06.090
  17. B. Dong, G. Weng, and R. Jin, “Active contour model driven by Self Organizing Maps for image segmentation,” Expert Syst. Appl., vol. 177, no. 178, p. 114948, 2021. https://doi.org/10.1016/j.eswa.2021.114948
  18. A. K. Helmy and G. S. El-Taweel, “Image segmentation scheme based on SOM-PCNN in frequency domain,” Appl. Soft Comput. J., vol. 40, pp. 405–415, 2016. https://doi.org/10.1016/j.asoc.2015.11.042
  19. M. N. Qureshi and M. V. Ahamad, “An Improved Method for Image Segmentation Using K-Means Clustering with Neutrosophic Logic,” Procedia Comput. Sci., vol. 132, pp. 534–540, 2018. https://doi.org/10.1016/j.procs.2018.05.006
  20. Y. Y. Sun, S. Chen, and L. Gao, “Feature extraction method based on improved linear LBP operator,” Proc. 2019 IEEE 3rd Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, no. Itnec, pp. 1536–1540, 2019. https://doi.org/10.1109/ITNEC.2019.8729320
  21. K. Tian, J. Li, J. Zeng, A. Evans, and L. Zhang, “Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm,” Comput. Electron. Agric., vol. 165, no. March, p. 104962, 2019. https://doi.org/10.1016/j.compag.2019.104962
  22. M. Alobed, A. M. M. Altrad, and Z. B. A. Bakar, “A Comparative Analysis of Euclidean, Jaccard and Cosine Similarity Measure and Arabic Wordnet for Automated Arabic Essay Scoring,” Proc. - CAMP 2021 2021 5th Int. Conf. Inf. Retr. Knowl. Manag. Digit. Technol. IR 4.0 Beyond, pp. 70–74, 2021. https://doi.org/10.1109/CAMP51653.2021.9498119
  23. A. L. N. Fred and A. K. Jain, “Learning pairwise similarity for data clustering,” Proc. - Int. Conf. Pattern Recognit., vol. 1, pp. 925–928, 2006. https://doi.org/10.1109/ICPR.2006.754
  24. A. Ilham, D. Ibrahim, L. Assaffat, and A. Solichan, “Tackling Initial Centroid of K-Means with Distance Part (DP-KMeans),” Proceeding - 2018 Int. Symp. Adv. Intell. Informatics Revolutionize Intell. Informatics Spectr. Humanit. SAIN 2018, pp. 185–189, 2019, doi: 10.1109/SAIN.2018.8673364.
  25. J. Montenegro, W. Gomez, and P. Sanchez-Orellana, “A comparative study of color spaces in skin-based face segmentation,” 2013 10th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. CCE 2013, pp. 313–317, 2013. https://doi.org/10.1109/ICEEE.2013.6676048
  26. C. C. Tseng and S. L. Lee, “A Low-Light Color Image Enhancement Method on CIELAB Space,” 2018 IEEE 7th Glob. Conf. Consum. Electron. GCCE 2018, pp. 29–33, 2018. https://doi.org/10.1109/GCCE.2018.8574809
  27. M. Wirth and D. Nikitenko, “The effect of colour space on image sharpening algorithms,” CRV 2010 - 7th Can. Conf. Comput. Robot Vis., pp. 79–85, 2010. https://doi.org/10.1109/CRV.2010.17
  28. L. Sahu and B. R. Mohan, “An improved K-means algorithm using modified cosine distance measure for document clustering using Mahout with Hadoop,” 9th Int. Conf. Ind. Inf. Syst. ICIIS 2014, 2015. https://doi.org/10.1109/ICIINFS.2014.7036661
  29. S. Bakheet and A. Al-Hamadi, “Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification,” Comput. Biol. Med., vol. 137, no. August, p. 104781, 2021. https://doi.org/10.1016/j.compbiomed.2021.104781
  30. Priyanka and D. Kumar, “Feature Extraction and Selection of kidney Ultrasound Images Using GLCM and PCA,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1722–1731, 2020. https://doi.org/10.1016/j.procs.2020.03.382
  31. A. Zotin, Y. Hamad, K. Simonov, and M. Kurako, “Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks,” Procedia Comput. Sci., vol. 159, pp. 1439–1448, 2019. https://doi.org/10.1016/j.procs.2019.09.314
  32. M. H. Abd Latif, H. Md Yusof, S. N. Sidek, and N. Rusli, “Implementation of GLCM Features in Thermal Imaging for Human Affective State Detection,” Procedia Comput. Sci., vol. 76, no. Iris, pp. 308–315, 2015. https://doi.org/10.1016/j.procs.2015.12.298
  33. M. Yogeshwari and G. Thailambal, “Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks,” Mater. Today Proc., no. xxxx, 2021. https://doi.org/10.1016/j.matpr.2021.03.700
  34. K. Prakash and S. Saradha, “Efficient prediction and classification for cirrhosis disease using LBP, GLCM and SVM from MRI images,” Mater. Today Proc., no. xxxx, pp. 2–7, 2021. https://doi.org/10.1016/j.matpr.2021.03.418
  35. L. S. Yu, S. Y. Chou, H. Y. Wu, Y. C. Chen, and Y. H. Chen, “Rapid and semi-quantitative colorimetric loop-mediated isothermal amplification detection of ASFV via HSV color model transformation,” J. Microbiol. Immunol. Infect., vol. 54, no. 5, pp. 963–970, 2021. https://doi.org/10.1016/j.jmii.2020.08.003
  36. G. Bargshady, X. Zhou, R. C. Deo, J. Soar, F. Whittaker, and H. Wang, “The modeling of human facial pain intensity based on Temporal Convolutional Networks trained with video frames in HSV color space,” Appl. Soft Comput. J., vol. 97, p. 106805, 2020. https://doi.org/10.1016/j.asoc.2020.106805
  37. Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient kNN classification algorithm for big data,” Neurocomputing, vol. 195, pp. 143–148, 2016. https://doi.org/10.1016/j.neucom.2015.08.112
  38. S. Alamuru and S. Jain, “Video event classification using KNN classifier with hybrid features,” Mater. Today Proc., no. xxxx, 2021. https://doi.org/10.1016/j.matpr.2021.03.154
  39. A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using intel FPGA platform: Covid-19 case study,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2022. https://doi.org/10.1016/j.jksuci.2022.04.006
  40. N. Binsaif, “Application of Machine Learning Models to the Detection of Breast Cancer,” Mob. Inf. Syst., vol. 2022, 2022. https://doi.org/10.1155/2022/7340689
Read More

References


A. Hidayatuloh, M. Nursalman, and E. Nugraha, “Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model,” 2018 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2018 - Proc., pp. 199–204, 2018. https://doi.org/10.1109/ICITSI.2018.8696087

C. Usha Kumari, S. Jeevan Prasad, and G. Mounika, “Leaf disease detection: Feature extraction with k-means clustering and classification with ANN,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, pp. 1095–1098, 2019. https://doi.org/10.1109/ICCMC.2019.8819750

H. Kibriya, R. Rafique, W. Ahmad, and S. M. Adnan, “Tomato Leaf Disease Detection Using Convolution Neural Network,” Proc. 18th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2021, pp. 346–351, 2021. https://doi.org/10.1109/IBCAST51254.2021.9393311

H. D. Gadade and D. K. Kirange, “Tomato leaf disease diagnosis and severity measurement,” Proc. World Conf. Smart Trends Syst. Secur. Sustain. WS4 2020, pp. 318–323, 2020. https://doi.org/10.1109/WorldS450073.2020.9210294

C. Zhou, S. Zhou, J. Xing, and J. Song, “Tomato Leaf Disease Identification by Restructured Deep Residual Dense Network,” IEEE Access, vol. 9, pp. 28822–28831, 2021. https://doi.org/10.1109/ACCESS.2021.3058947

H. Sabrol and K. Satish, “Tomato plant disease classification in digital images using classification tree,” Int. Conf. Commun. Signal Process. ICCSP 2016, pp. 1242–1246, 2016. https://doi.org/10.1109/ICCSP.2016.7754351

M. M. Gunarathna and R. M. K. T. Rathnayaka, “Experimental determination of CNN hyper-parameters for tomato disease detection using leaf images,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 464–469, 2020. https://doi.org/10.1109/ICAC51239.2020.9357284

Y. ALTUNTAŞ and F. KOCAMAZ, “Deep Feature Extraction for Detection of Tomato Plant Diseases and Pests based on Leaf Images,” Celal Bayar Üniversitesi Fen Bilim. Derg., vol. 17, no. 2, pp. 145–152, 2021. https://doi.org/10.18466/cbayarfbe.812375

A. Yousuf and U. Khan, “Ensemble Classifier for Plant Disease Detection,” Int. J. Comput. Sci. Mob. Comput., vol. 10, no. 1, pp. 14–22, 2021. https://doi.org/10.47760/ijcsmc.2021.v10i01.003

J. Shijie, J. Peiyi, H. Siping, and Sl. Haibo, “Automatic detection of tomato diseases and pests based on leaf images,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-Janua, pp. 3507–3510, 2017. https://doi.org/10.1109/CAC.2017.8243388

M. Sardogan, A. Tuncer, and Y. Ozen, “Plant Leaf Disease Detection and Classification Based on CNN with LVQ Algorithm,” UBMK 2018 - 3rd Int. Conf. Comput. Sci. Eng., pp. 382–385, 2018. https://doi.org/10.1109/UBMK.2018.8566635

L. Liu, Y. Wang, and W. Chi, “Image Recognition Technology Based on Machine Learning,” IEEE Access, pp. 1–1, 2020. https://doi.org/10.1109/ACCESS.2020.3021590

H. Yao, Q. Duan, D. Li, and J. Wang, “An improved K-means clustering algorithm for fish image segmentation,” Math. Comput. Model., vol. 58, no. 3–4, pp. 790–798, 2013. https://doi.org/10.1016/j.mcm.2012.12.025

E. Aghajari and G. D. Chandrashekhar, “Self-Organizing Map based Extended Fuzzy C-Means (SEEFC) algorithm for image segmentation,” Appl. Soft Comput. J., vol. 54, pp. 347–363, 2017. https://doi.org/10.1016/j.asoc.2017.01.003

C. Shanmugam and E. Chandira Sekaran, “IRT image segmentation and enhancement using FCM-MALO approach,” Infrared Phys. Technol., vol. 97, no. December, pp. 187–196, 2019. https://doi.org/10.1016/j.infrared.2018.12.032

N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm,” Procedia Comput. Sci., vol. 54, pp. 764–771, 2015. https://doi.org/10.1016/j.procs.2015.06.090

B. Dong, G. Weng, and R. Jin, “Active contour model driven by Self Organizing Maps for image segmentation,” Expert Syst. Appl., vol. 177, no. 178, p. 114948, 2021. https://doi.org/10.1016/j.eswa.2021.114948

A. K. Helmy and G. S. El-Taweel, “Image segmentation scheme based on SOM-PCNN in frequency domain,” Appl. Soft Comput. J., vol. 40, pp. 405–415, 2016. https://doi.org/10.1016/j.asoc.2015.11.042

M. N. Qureshi and M. V. Ahamad, “An Improved Method for Image Segmentation Using K-Means Clustering with Neutrosophic Logic,” Procedia Comput. Sci., vol. 132, pp. 534–540, 2018. https://doi.org/10.1016/j.procs.2018.05.006

Y. Y. Sun, S. Chen, and L. Gao, “Feature extraction method based on improved linear LBP operator,” Proc. 2019 IEEE 3rd Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, no. Itnec, pp. 1536–1540, 2019. https://doi.org/10.1109/ITNEC.2019.8729320

K. Tian, J. Li, J. Zeng, A. Evans, and L. Zhang, “Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm,” Comput. Electron. Agric., vol. 165, no. March, p. 104962, 2019. https://doi.org/10.1016/j.compag.2019.104962

M. Alobed, A. M. M. Altrad, and Z. B. A. Bakar, “A Comparative Analysis of Euclidean, Jaccard and Cosine Similarity Measure and Arabic Wordnet for Automated Arabic Essay Scoring,” Proc. - CAMP 2021 2021 5th Int. Conf. Inf. Retr. Knowl. Manag. Digit. Technol. IR 4.0 Beyond, pp. 70–74, 2021. https://doi.org/10.1109/CAMP51653.2021.9498119

A. L. N. Fred and A. K. Jain, “Learning pairwise similarity for data clustering,” Proc. - Int. Conf. Pattern Recognit., vol. 1, pp. 925–928, 2006. https://doi.org/10.1109/ICPR.2006.754

A. Ilham, D. Ibrahim, L. Assaffat, and A. Solichan, “Tackling Initial Centroid of K-Means with Distance Part (DP-KMeans),” Proceeding - 2018 Int. Symp. Adv. Intell. Informatics Revolutionize Intell. Informatics Spectr. Humanit. SAIN 2018, pp. 185–189, 2019, doi: 10.1109/SAIN.2018.8673364.

J. Montenegro, W. Gomez, and P. Sanchez-Orellana, “A comparative study of color spaces in skin-based face segmentation,” 2013 10th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. CCE 2013, pp. 313–317, 2013. https://doi.org/10.1109/ICEEE.2013.6676048

C. C. Tseng and S. L. Lee, “A Low-Light Color Image Enhancement Method on CIELAB Space,” 2018 IEEE 7th Glob. Conf. Consum. Electron. GCCE 2018, pp. 29–33, 2018. https://doi.org/10.1109/GCCE.2018.8574809

M. Wirth and D. Nikitenko, “The effect of colour space on image sharpening algorithms,” CRV 2010 - 7th Can. Conf. Comput. Robot Vis., pp. 79–85, 2010. https://doi.org/10.1109/CRV.2010.17

L. Sahu and B. R. Mohan, “An improved K-means algorithm using modified cosine distance measure for document clustering using Mahout with Hadoop,” 9th Int. Conf. Ind. Inf. Syst. ICIIS 2014, 2015. https://doi.org/10.1109/ICIINFS.2014.7036661

S. Bakheet and A. Al-Hamadi, “Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification,” Comput. Biol. Med., vol. 137, no. August, p. 104781, 2021. https://doi.org/10.1016/j.compbiomed.2021.104781

Priyanka and D. Kumar, “Feature Extraction and Selection of kidney Ultrasound Images Using GLCM and PCA,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 1722–1731, 2020. https://doi.org/10.1016/j.procs.2020.03.382

A. Zotin, Y. Hamad, K. Simonov, and M. Kurako, “Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks,” Procedia Comput. Sci., vol. 159, pp. 1439–1448, 2019. https://doi.org/10.1016/j.procs.2019.09.314

M. H. Abd Latif, H. Md Yusof, S. N. Sidek, and N. Rusli, “Implementation of GLCM Features in Thermal Imaging for Human Affective State Detection,” Procedia Comput. Sci., vol. 76, no. Iris, pp. 308–315, 2015. https://doi.org/10.1016/j.procs.2015.12.298

M. Yogeshwari and G. Thailambal, “Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks,” Mater. Today Proc., no. xxxx, 2021. https://doi.org/10.1016/j.matpr.2021.03.700

K. Prakash and S. Saradha, “Efficient prediction and classification for cirrhosis disease using LBP, GLCM and SVM from MRI images,” Mater. Today Proc., no. xxxx, pp. 2–7, 2021. https://doi.org/10.1016/j.matpr.2021.03.418

L. S. Yu, S. Y. Chou, H. Y. Wu, Y. C. Chen, and Y. H. Chen, “Rapid and semi-quantitative colorimetric loop-mediated isothermal amplification detection of ASFV via HSV color model transformation,” J. Microbiol. Immunol. Infect., vol. 54, no. 5, pp. 963–970, 2021. https://doi.org/10.1016/j.jmii.2020.08.003

G. Bargshady, X. Zhou, R. C. Deo, J. Soar, F. Whittaker, and H. Wang, “The modeling of human facial pain intensity based on Temporal Convolutional Networks trained with video frames in HSV color space,” Appl. Soft Comput. J., vol. 97, p. 106805, 2020. https://doi.org/10.1016/j.asoc.2020.106805

Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang, “Efficient kNN classification algorithm for big data,” Neurocomputing, vol. 195, pp. 143–148, 2016. https://doi.org/10.1016/j.neucom.2015.08.112

S. Alamuru and S. Jain, “Video event classification using KNN classifier with hybrid features,” Mater. Today Proc., no. xxxx, 2021. https://doi.org/10.1016/j.matpr.2021.03.154

A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using intel FPGA platform: Covid-19 case study,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2022. https://doi.org/10.1016/j.jksuci.2022.04.006

N. Binsaif, “Application of Machine Learning Models to the Detection of Breast Cancer,” Mob. Inf. Syst., vol. 2022, 2022. https://doi.org/10.1155/2022/7340689

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 16 Download : 39

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License