Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 2, May 2022
  4. Articles

Issue

Vol. 7, No. 2, May 2022

Issue Published : May 31, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

A Wearable Device for Enhancing Basketball Shooting Correctness with MPU6050 Sensors and Support Vector Machine Classification

https://doi.org/10.22219/kinetik.v7i2.1435
Baginda Achmad Fadillah
Telkom University
Aji Gautama Putrada
Telkom University
Maman Abdurohman
Telkom University

Corresponding Author(s) : Aji Gautama Putrada

ajigps@telkomuniversity.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 2, May 2022
Article Published : May 31, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

One of the impacts of Covid-19 is the delay of basketball sports competitions, which influences the athlete’s fitness and the athlete’s ability to play, especially for shooting techniques. Existing research in wearable devices for basketball shooting correctness classification exists. However, there is still an opportunity to increase the classification performance. This research proposes designing and building a smartwatch prototype to classify the basketball shooting technique as correct or incorrect with enhanced sensors and classification methods. The system is based on an Internet of things architecture and uses an MPU6050 sensor to take gyroscope data in the form of X, Y, and Z movements and accelerometer data to accelerate hand movements. Then the data is sent to the Internet using NodeMCU microcontrollers. Feature extraction generates 18 new features from 3 axes on each sensor data before classification. Then, the correct or incorrect classification of the shooting technique uses the Support-Vector-Machine (SVM) method. The research compares two SVM kernels, linear and 3rd-degree polynomial kernels. The results of using the max, average, and variance features in the SVM classification with the polynomial kernel produce the highest accuracy of 94.4% compared to the linear kernel. The contribution of this paper is an IoT-based basketball shooting correctness classification system with superior accuracy compared to existing research.

Keywords

Accelerometer Gyroscope Basketball Shooting Support Vector Machine Internet of Things Wearable Device MPU6050 Sensor
Fadillah, B. A., Putrada, A. G., & Abdurohman, M. (2022). A Wearable Device for Enhancing Basketball Shooting Correctness with MPU6050 Sensors and Support Vector Machine Classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(2). https://doi.org/10.22219/kinetik.v7i2.1435
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. P. D. Y. Patil and M. Wasnik, “Important Skills In Basketball And Different Methods,” Aayushi Int Interdiscip Res Journa, pp. 140–2, 2020.
  2. N. Kuhlman and C.-H. Min, “Analysis and classification of basketball shooting form using wearable sensor systems,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 1478–1482.
  3. A. P. Putra, Analisis Pergerakan Tangan Saat Free Throw Pada Olahraga Bola Basket Menggunakan Sensor IMU dengan Metode Decision Tree. Universitas Telkom, S1 Informatika, 2021. Accessed: Apr. 11, 2022. [Online]. Available: https://openlibrary.telkomuniversity.ac.id/home/catalog/id/169140/slug/analisis-pergerakan-tangan-saat-free-throw-pada-olahraga-bola-basket-menggunakan-sensor-imu-dengan-metode-decision-tree.html
  4. M. Ameliasari, A. G. Putrada, and R. R. Pahlevi, “An Evaluation of SVM in Hand Gesture Detection Using IMU-Based Smartwatches for Smart Lighting Control,” JURNAL INFOTEL, vol. 13, no. 2, Art. no. 2, May 2021, doi: 10.20895/infotel.v13i2.656.
  5. A. S. dos S. de A. Antunes, “Use of IoT technologies to improve shooting performance in basketball,” PhD Thesis, 2018.
  6. S. Shankar, R. P. Suresh, V. Talasila, and V. Sridhar, “Performance measurement and analysis of shooting form of basketball players using a wearable IoT system,” in 2018 IEEE 8th International Advance Computing Conference (IACC), 2018, pp. 26–32.
  7. M. Ali, “IOT Based Architecture for Basketball Supervision,” Lahore Garrison University Research Journal of Computer Science and Information Technology, vol. 3, no. 4, pp. 30–38, 2019.
  8. K. Sosopoulos and M. T. Woldu, “IoT smart athletics: Boxing glove sensors implementing machine learning for an integrated training solution.” 2021.
  9. B. Iancu, “Goalkeeper analytics using a wearable embedded system,” Academy of Economic Studies. Economy Informatics, vol. 18, no. 1, pp. 5–12, 2018.
  10. A. Krüger, “Recognizing and classifying a golf swing using accelerometer in a Smartwatch.” 2017.
  11. I. Mahesa, A. G. Putrada, and M. Abdurohman, “Egg quality detection system using fuzzy logic method,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 207–216, 2019.
  12. F. A. Rachman, A. G. Putrada, and M. Abdurohman, “Distributed Campus Bike Sharing System Based-on Internet of Things (IoT),” in 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018, pp. 333–336.
  13. F. Z. A. Atoir, A. G. Putrada, and R. R. Pahlevi, “An evaluation of complementary filter method in increasing the performance of motion tracking gloves for virtual reality games,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 2021.
  14. M. H. Alfarisy, A. G. Putrada, and M. Abdurohman, “Energy Harvesting Pada Ban Mobil Menggunakan Piezoelektrik Transducer Untuk Wsn Suhu Ban,” eProceedings of Engineering, vol. 8, no. 5, 2021.
  15. G. D. Wicaksana, M. Abdurohman, and A. G. Putrada, “Peningkatan quality of experience pada permainan online multiplayer berbasis Arduino dengan menggunakan MQTT server,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 1, pp. 36–43, 2020.
  16. S. Amarta, A. G. Putrada, and N. A. Suwastika, “Asesmen Kebisingan Di Open Library Telkom University Menggunakan Sistem Monitoring Suara Berbasis Iot,” eProceedings of Engineering, vol. 6, no. 1, 2019.
  17. Q. Aini, U. Rahardja, I. Handayani, M. Hardini, and A. Ali, “Utilization of google spreadsheets as activity information media at the official site alphabet incubator,” in Proc. Int. Conf. Ind. Eng. Oper. Manag, 2019, no. 7, pp. 1330–1341.
  18. N. H. Anh, “Development of a Software Environment and User Interface for the Analysis of Accelerometer Data,” 2020.
  19. S. Karuniawati, A. G. Putrada, and A. Rakhmatsyah, “Optimization of Grow Lights Control in IoT-Based Aeroponic Systems with Sensor Fusion and Random Forest Classification,” in 2021 International Symposium on Electronics and Smart Devices (ISESD), 2021, pp. 1–6.
  20. R. R. Pamungkas, A. G. Putrada, and M. Abdurohman, “Performance improvement of non invasive blood glucose measuring system with near infra red using artificial neural networks,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 315–324, 2019.
  21. A. Pandey and A. Jain, “Comparative analysis of KNN algorithm using various normalization techniques,” International Journal of Computer Network and Information Security, vol. 9, no. 11, p. 36, 2017.
  22. A. F. Aryuni, A. G. Putrada, and M. Abdurohman, “Klasifikasi Penumpang Naik Dan Turun Dengan Sensor Load Cell Menggunakan Ekstraksi Fitur Dan Metode Support Vector Machine,” eProceedings of Engineering, vol. 8, no. 2, 2021.
  23. P. Nando, A. G. Putrada, and M. Abdurohman, “Increasing The Precision Of Noise Source Detection System using KNN Method,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 157–168, 2019.
  24. E. S. Saputra, A. G. Putrada, and M. Abdurohman, “Selection of Vape Sensing Features in IoT-Based Gas Monitoring with Feature Importance Techniques,” in 2019 Fourth International Conference on Informatics and Computing (ICIC), 2019, pp. 1–5.
  25. A. Kesumawati, “Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII,” 2018.
Read More

References


P. D. Y. Patil and M. Wasnik, “Important Skills In Basketball And Different Methods,” Aayushi Int Interdiscip Res Journa, pp. 140–2, 2020.

N. Kuhlman and C.-H. Min, “Analysis and classification of basketball shooting form using wearable sensor systems,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 1478–1482.

A. P. Putra, Analisis Pergerakan Tangan Saat Free Throw Pada Olahraga Bola Basket Menggunakan Sensor IMU dengan Metode Decision Tree. Universitas Telkom, S1 Informatika, 2021. Accessed: Apr. 11, 2022. [Online]. Available: https://openlibrary.telkomuniversity.ac.id/home/catalog/id/169140/slug/analisis-pergerakan-tangan-saat-free-throw-pada-olahraga-bola-basket-menggunakan-sensor-imu-dengan-metode-decision-tree.html

M. Ameliasari, A. G. Putrada, and R. R. Pahlevi, “An Evaluation of SVM in Hand Gesture Detection Using IMU-Based Smartwatches for Smart Lighting Control,” JURNAL INFOTEL, vol. 13, no. 2, Art. no. 2, May 2021, doi: 10.20895/infotel.v13i2.656.

A. S. dos S. de A. Antunes, “Use of IoT technologies to improve shooting performance in basketball,” PhD Thesis, 2018.

S. Shankar, R. P. Suresh, V. Talasila, and V. Sridhar, “Performance measurement and analysis of shooting form of basketball players using a wearable IoT system,” in 2018 IEEE 8th International Advance Computing Conference (IACC), 2018, pp. 26–32.

M. Ali, “IOT Based Architecture for Basketball Supervision,” Lahore Garrison University Research Journal of Computer Science and Information Technology, vol. 3, no. 4, pp. 30–38, 2019.

K. Sosopoulos and M. T. Woldu, “IoT smart athletics: Boxing glove sensors implementing machine learning for an integrated training solution.” 2021.

B. Iancu, “Goalkeeper analytics using a wearable embedded system,” Academy of Economic Studies. Economy Informatics, vol. 18, no. 1, pp. 5–12, 2018.

A. Krüger, “Recognizing and classifying a golf swing using accelerometer in a Smartwatch.” 2017.

I. Mahesa, A. G. Putrada, and M. Abdurohman, “Egg quality detection system using fuzzy logic method,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 207–216, 2019.

F. A. Rachman, A. G. Putrada, and M. Abdurohman, “Distributed Campus Bike Sharing System Based-on Internet of Things (IoT),” in 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018, pp. 333–336.

F. Z. A. Atoir, A. G. Putrada, and R. R. Pahlevi, “An evaluation of complementary filter method in increasing the performance of motion tracking gloves for virtual reality games,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 2021.

M. H. Alfarisy, A. G. Putrada, and M. Abdurohman, “Energy Harvesting Pada Ban Mobil Menggunakan Piezoelektrik Transducer Untuk Wsn Suhu Ban,” eProceedings of Engineering, vol. 8, no. 5, 2021.

G. D. Wicaksana, M. Abdurohman, and A. G. Putrada, “Peningkatan quality of experience pada permainan online multiplayer berbasis Arduino dengan menggunakan MQTT server,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 1, pp. 36–43, 2020.

S. Amarta, A. G. Putrada, and N. A. Suwastika, “Asesmen Kebisingan Di Open Library Telkom University Menggunakan Sistem Monitoring Suara Berbasis Iot,” eProceedings of Engineering, vol. 6, no. 1, 2019.

Q. Aini, U. Rahardja, I. Handayani, M. Hardini, and A. Ali, “Utilization of google spreadsheets as activity information media at the official site alphabet incubator,” in Proc. Int. Conf. Ind. Eng. Oper. Manag, 2019, no. 7, pp. 1330–1341.

N. H. Anh, “Development of a Software Environment and User Interface for the Analysis of Accelerometer Data,” 2020.

S. Karuniawati, A. G. Putrada, and A. Rakhmatsyah, “Optimization of Grow Lights Control in IoT-Based Aeroponic Systems with Sensor Fusion and Random Forest Classification,” in 2021 International Symposium on Electronics and Smart Devices (ISESD), 2021, pp. 1–6.

R. R. Pamungkas, A. G. Putrada, and M. Abdurohman, “Performance improvement of non invasive blood glucose measuring system with near infra red using artificial neural networks,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 315–324, 2019.

A. Pandey and A. Jain, “Comparative analysis of KNN algorithm using various normalization techniques,” International Journal of Computer Network and Information Security, vol. 9, no. 11, p. 36, 2017.

A. F. Aryuni, A. G. Putrada, and M. Abdurohman, “Klasifikasi Penumpang Naik Dan Turun Dengan Sensor Load Cell Menggunakan Ekstraksi Fitur Dan Metode Support Vector Machine,” eProceedings of Engineering, vol. 8, no. 2, 2021.

P. Nando, A. G. Putrada, and M. Abdurohman, “Increasing The Precision Of Noise Source Detection System using KNN Method,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 157–168, 2019.

E. S. Saputra, A. G. Putrada, and M. Abdurohman, “Selection of Vape Sensing Features in IoT-Based Gas Monitoring with Feature Importance Techniques,” in 2019 Fourth International Conference on Informatics and Computing (ICIC), 2019, pp. 1–5.

A. Kesumawati, “Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII,” 2018.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 51 Download : 24

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License